The Synthesis of Heterocycles via Addition-Elimination Reactions of 4- and 5-Aminoimidazoles

Adnan H. M. AI-Shaar, Robert K. Chambers, David W. Gilmour, David J. Lythgoe,
Ian McClenaghan and Christopher A. Ramsden * \dagger
Dagenham Research Centre, Rhône-Poulenc Rorer Ltd., Rainham Road South, Dagenham, Essex RM10 7XS, UK

Abstract

4-Aminoimidazoles 1 undergo addition-elimination reactions with the electrophilic reagents 5-12 to give exclusively N-adducts, which are useful intermediates for further synthetic transformations to novel heterocyclic systems. Diethyl ethoxymethylenemalonate 5 and 4-amino-1-benzylimidazole $\mathbf{1 g}$ give the adduct 13 g and subsequent acid-catalysed cyclisation gives the imidazo[4,5-b]pyridine 25 and the heterocyclic mesomeric betaine 26 which undergoes 1,3-dipolar cycloaddition with dimethyl acetylenedicarboxylate to give two products 29 and 30 . When the 2-alkyl-4-aminoimidazoles $1 \mathrm{~b}-\mathrm{d}$ are generated in situ in the presence of the reagent 5, significant products are the 5,5'diimidazoles 15 and a mechanism for this novel transformation is proposed. 4-Amino-3-cyano-imidazo[1,5-a] pyrimidines 40 and 41 are formed by cyclisation of the N-adducts prepared using ethoxymethylenemalononitriles 6 and 7. Ethoxymethyleneurethane 9 gives the adducts 66 and cyclisation of the parent adduct 66a gives the novel imidazo[1,5-a]-1,3,5-triazin-4-one 68a, the potassium salt of which undergoes N-alkylation. The use of the reagents 10-12 leads to novel 4-aminoimidazo[1,5-a]-1,3,5-triazine derivatives 72 whose chemical reactions with both electrophilic and nucleophilic reagents are reported. 5-Aminoimidazoles 3 undergo addition-elimination reactions with the electrophilic reagents 5-12 to give N-adducts and/or C-adducts, depending upon the structure of the reagent. These stable addition elimination products are usually obtained in good yield and are useful intermediates for further synthesis. Reaction of the amines 3 with diethyl ethoxymethylenemalonate 5 gives mainly N-adducts 17 which can be cyclised using phosphoryl chloride to give the versatile 7 -chloroimidazo[4,5-b]pyridines 31. With ethoxymethylenemalononitrile 6 the amines 3 give C-adducts 42 . Thermal cyclisation of these adducts 42 gives 5 -amino-6-cyanoimidazo[4,5-b] pyridines 43 which are transformed into novel heterocyclic systems including the tricyclic imidazo $\left[4^{\prime}, 5^{\prime}: 5,6\right]$ pyrido $[2,3-d]$ pyrimidines 55 . Cyclisation of the adducts obtained using ethoxymethyleneurethane 9 and the N-cyano analogues 10 and 12 provides new synthetic routes to amino-purine derivatives 86 and 87 and hypoxanthines 70 . The preference of electrophilic reagents for N - or C-addition to 5 -aminoimidazoles $\mathbf{3}$ is rationalised using Frontier Molecular Orbital theory.

In the preceding paper ${ }^{1}$ we have described the in situ generation of 4 - and 5 -aminoimidazoles 1 and 3 by catalytic reduction of 4 and 5-nitroimidazoles 2 and 4 . We now report the condensation of these novel amines with electrophilic reagents 5-12 and the utilisation of the resulting products in heterocyclic synthesis. In most of this work we have found it convenient to generate the amines 1 in situ in the presence of the appropriate reagent. In a later section we discuss the factors which may control C addition or N-addition of electrophilic reagents to 5 -aminoimidazoles 3 in terms of a Frontier Molecular Orbital model.

Reactions Utilising Diethyl Ethoxymethylenemalonate 5.When 4-aminoimidazole 1a or the 1 -substituted derivatives 1e, \mathbf{g}, \mathbf{i}, \mathbf{j} were generated in situ in the presence of diethyl ethoxymethylenemalonate 5 , by catalytic reduction of ethanolic solutions of the appropriate 4-nitroimidazole 2, the N-additionelimination products $13 \mathrm{a}, \mathbf{e}, \mathbf{g}, \mathbf{i}, \mathbf{j}$ were obtained. No other products were isolated and there was no evidence of formation of the C-addition-elimination products 14 . In contrast, when the 1 -unsubstituted 2 -alkyl-4-nitroimidazoles $\mathbf{2 b}$-d were reduced under similar conditions, in addition to the products 13b-d, the 5,5'-diimidazole derivatives $\mathbf{1 5 b}$-d were obtained as
\dagger Present address: Department of Chemistry, Keele University, Keele, Staffordshire ST5 5BG, UK.

1

3

2

4

In formulae 1-33, 38-43, and 64-70: a $R^{1}=R^{2}=H ; b R^{1}=H, R^{2}=, \mathrm{Me}$; $c R^{1}=H, R^{2}=E t ; d R^{1}=H, R^{2}=P r ; ~ e R^{1}=R^{2}=M e ; R^{1}=M e, R^{2}=P r$; $g R^{1}=\mathrm{CH}_{2} \mathrm{Ph}, \mathrm{R}^{2}=\mathrm{H} ; \boldsymbol{h} \mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{OCOMe}, \mathrm{R}^{2}=\mathrm{H}$;
i $R^{1}=\mathrm{CH}_{2} \mathrm{OCOMe}, \mathrm{R}^{2}=\mathrm{Me} ; j \mathrm{R}^{1}=\mathrm{SO}_{2} \mathrm{NMe}_{2}, \mathrm{R}^{2}=\mathrm{H} ; k \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{H}$; $1 \mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{R}^{2}=\mathrm{Me} ; m \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$; $n R^{1}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OAc}, \mathrm{R}^{2}=\mathrm{Me} ; \circ \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{CHCHPh}$; $p R^{1}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}, \mathrm{R}^{2}=\mathrm{Me}$

$5 \mathrm{R}=\mathrm{H}, \mathrm{X}=\mathrm{Y}=\mathrm{CO}_{2} \mathrm{Et}$
$6 R=H, X=Y=C N$
$7 R=M e, X=Y=C N$
$8 R=H, X=C O_{2} E t, Y=C N$

$9 \mathrm{R}=\mathrm{H}, \mathrm{X}=\mathrm{CO}_{2} \mathrm{Et}$

12
the major products. Table 1 shows the isolated yields of products 13 and 15 formed from various precursors. The product structures 13 and 15 were fully supported by their spectroscopic and chemical properties. Typically, compound 13b shows a ${ }^{1} \mathrm{H}$ NMR signal at $\delta 6.57$ which is attributable to the imidazole ring proton at position 5 and doublets at $\delta 8.68$ and $\delta 10.90$ due to the coupled ($J 13 \mathrm{~Hz}$) aminomethylene ($\mathrm{NHCH}=$) protons. In the spectrum of the $5,5^{\prime}$-diimidazole 15b a signal attributable to an imidazole ring proton is absent but the aminomethylene signals ($\delta 8.55$ and 10.66) are still observed. Acid-catalysed cyclisation (conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ and acetic anhydride) of the $5,5^{\prime}$-diimidazoles 15 gives the $8,8^{\prime}$-diimidazo [3,4-a] pyrimidines 16.

When 5-amino-1,2-dimethylimidazole 3 e was generated in situ in ethanol solution in the presence of diethyl ethoxymethylenemalonate 5 , by catalytic reduction of 1,2-dimethyl-5nitroimidazole $4 \mathbf{e}$, three products were obtained. The major

16

18
product (65%) was the ethyleneamino derivative 17 e resulting from condensation of the reagent with the 5 -amino group. A minor product (5%) was the isomer 18 e which is formed by reaction of the reagent at the 4 -position of the imidazole ring. This pair of isomers could not be interconverted, 17e $\rightleftharpoons 18 \mathrm{e}$, and the assigned structures are fully supported by their chemical and spectroscopic properties. Particularly significant is the presence of an imidazole ring proton ($\delta 6.79,4-\mathrm{H}$) in the ${ }^{1} \mathrm{H}$ NMR spectrum of compound 17 e whereas a similar proton signal is absent from the spectrum of the amine 18e. The third product (1%) was shown to have the $5,5^{\prime}$-diimidazole structure 15e. This structural assignment 15 e is fully supported by analytical and spectroscopic data. The ${ }^{1} \mathrm{H}$ NMR spectrum shows the absence of any imidazole ring protons together with $\mathrm{a}=\mathrm{CH}-\mathrm{NH}$ fragment ($J 12 \mathrm{~Hz}$), two methyl groups $\left(\mathrm{C}-\mathrm{CH}_{3}\right.$ and $\mathrm{N}-\mathrm{CH}_{3}$) and two ethyl ester functions.

Using procedures similar to that described for compound 3e, the amines $\mathbf{3 f}-\mathbf{m}$ were also allowed to react with diethyl ethoxymethylenemalonate 5 and the yields of the products isolated are shown in Table 1. The vinylamine 17 is the major product in all cases and, when isolated, the derivatives 18 and 15 are only minor products. When in situ formation and trapping of the amines $3 \mathrm{e}, 1$ was repeated using dioxane as solvent, the major products 17 e , I were formed in significantly greater yield (Table 1) and the by-products $15 e$, I and $18 e$, I were absent. This advantage of dioxane over ethanol as solvent led us to use

Table 1 Products formed by the reduction of 4 or 5-nitro-imidazoles 2 or $\mathbf{4}$ in the presence of diethyl ethoxymethylenemalonate 5

Nitroimidazole	Solvent	Products (\% yield)		
4-Nitroimidazoles		$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$
$\mathbf{2 a}$	Ethanol	45	-	-
$\mathbf{2 a}$	Ethanol	8	-	30
$\mathbf{2 \mathbf { c }}$	Ethanol	-	-	32
$\mathbf{2 d}$	Ethanol	9	-	34
$\mathbf{2 e}$	Ethanol	36	-	-
$\mathbf{2 i}$	Ethanol	41	-	-
$\mathbf{2 j}$	Ethanol	14	-	-
$\mathbf{5 - N i t r o i m i d a z o l e s}$		$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 5}$
$\mathbf{4 e}$	Ethanol	65	5	1
$\mathbf{4 e}$	Dioxane	86	-	-
$\mathbf{4 k}$	Ethanol	62	-	-
$\mathbf{4 l}$	Ethanol	32	-	0.4
$\mathbf{4 l}$	Dioxane	44	-	-
$\mathbf{4 f}$	Ethanol	64	4.5	1.6
$\mathbf{4 m}$	Ethanol	43	3	-

dioxane as the preferred solvent in all subsequent synthetic work using 4- or 5 -aminoimidazoles 1 or 3 .

Further support for the structures of the amines 18 was provided by a study of the chemical properties of the derivative 18e. Reaction with diethyl ethoxymethylenemalonate 5 gave the bis(diethoxycarbonylvinyl) derivative 19 (87%) and 3,4-dichlorophenyl isocyanate gave the urea $20(34 \%)$, confirming the presence of the primary amino group. When compound $18 e$ was heated at reflux temperature in a solution of ethanol saturated with hydrogen chloride, cyclisation occurred to give the imidazo $4,5-b]$ pyridine 21e (82%). Interestingly, when

the same compound 18 e was heated under reflux in xylene an intermolecular condensation with elimination of diethyl malonate occurred to give the orange crystalline imine 22e (56\%).

Formation of the diimidazole derivatives 15 was unexpected and it is of interest to consider reaction mechanisms which can account for: i, formation of diimidazoles in moderate yield using 1-unsubstituted 2-alkyl-4-nitroimidazoles $\mathbf{2 b}$-d; ii, formation of diimidazoles in very low yield using 5 -nitroimidazoles; iii, no formation of diimidazoles using 4-nitroimidazole 2a or 1substituted 4 -nitroimidazoles $2 \mathbf{e}, \mathbf{g}, \mathbf{i}$, \mathbf{j}. We propose that formation of the products occurs via an initial electrophilic addition of the precursor nitroimidazole to its aminoimidazole reduction product. This mechanism is shown in Scheme 1. In particular, we suggest that it is a 5 -nitroimidazole 4 which is the electrophile and that it is the opportunity for 4-nitroimidazoles $\mathbf{2 b - d}$ to tautomerise to the 5 -nitro isomers $\mathbf{4 b}$-d which enables

Scheme 1
them to participate in the reaction. Our preference for proposing a 5 -nitroimidazole as the reaction species is based on the observation that 5 -nitroimidazoles 4 are known to have significantly greater electron affinities than 4-nitroimidazoles 2 and can be expected to be more reactive towards electron-rich species. ${ }^{1}$ This aspect of the mechanism is discussed in a later section where we discuss the relationship between the electronic structure and the reactivity and regioselectivity of aminoimidazoles towards electrophiles. The intermediate 23 (Scheme 1) may then undergo tautomerism and elimination of water to give the nitroso derivative 24 which is then reduced to the amine and reaction with diethyl ethoxymethylenemalonate 5 gives the observed product 15. A similar mechanism can account for the formation of analogous products by 5 -nitroimidazoles. The reason why 5 -nitroimidazoles give only very low yields of 4,4'diimidazole products is not clear but this is possibly due to either a restriction on the tautomeric opportunities during reaction or a greater reactivity towards 4 -aminoimidazoles rather than 5 -aminoimidazoles. It is surprising that 4(5)nitroimidazole $\mathbf{2 a}$ shows no evidence of diimidazole formation during reduction: it is possible that a 2 -alkyl substituent is necessary to activate the aminoimidazole by elevating its HOMO energy.
Cyclisation of the 4 -amino-1-benzylimidazole additionelimination product $\mathbf{1 3 g}$ using concentrated sulfuric acid in acetic anhydride gave a mixture of two products (Scheme 2)

Scheme 2 Reagents: i, conc. $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{Ac}_{2} \mathrm{O}$
which were separated by pH -controlled selective precipitation and identified as the imidazo[4,5-b]pyridine 25 (11%) and the imidazo[3,4-a]pyrimidin-7-ium-4-olate 26 (29%). The structure of the first product 25 , which was isolated and characterised as its hydrogen sulfate salt, was fully supported by its ${ }^{1} \mathrm{H}$ NMR spectrum which showed two uncoupled heterocyclic ring protons at $\delta 8.40(5-\mathrm{H})$ and $\delta 9.94(2-\mathrm{H})$. The ${ }^{1} \mathrm{H}$ NMR spectrum of the conjugated heterocyclic mesomeric betaine 26 shows
three heterocyclic ring protons. Signals at $\delta 7.73(8-\mathrm{H})$ and $\delta 9.55(6-\mathrm{H})$ appear as doublets $(J 1 \mathrm{~Hz})$, which is consistent with the structural assignment 26 , and the third signal at $\delta 8.46$ ($2-\mathrm{H}$) is a singlet.

Participation in 1,3-dipolar cycloadditions is a property of many conjugated heterocyclic mesomeric betaines ${ }^{2,3}$ and we have investigated the reaction of compound 26 with dimethyl acetylenedicarboxylate. When this reagent was heated with the mesomeric betaine 26 in toluene solution of $100^{\circ} \mathrm{C}$, a mixture of two products was obtained. These were separated by chromatography and identified as the N-benzylpyrrole derivative $29(32 \%)$ and the N-benzylimidazole derivative $30(21 \%)$.

Product 29 was fully characterised by its analytical and spectroscopic properties. The ${ }^{1} \mathrm{H}$ NMR spectrum shows a pyrrole ring proton ($\delta 7.87$), a pyrimidine ring proton ($\delta 8.64$) and a very broad signal ($\delta 13.00$) due to the acidic OH proton. We interpret the formation of this product 29 in terms of an initial 1,3-dipolar cycloaddition of dimethyl acetylenedicarboxylate to the azomethine ylide fragment of betaine 26a (Scheme 3). The intermediate cycloadduct 28 may then undergo

Scheme 3 Reagents: i, $\mathrm{MeO}_{2} \mathrm{C} \cdot \mathrm{C} \equiv \mathrm{C} \cdot \mathrm{CO}_{2} \mathrm{Me}$
fragmentation in the manner shown in Scheme 3 to give the observed product 29. The ${ }^{1} \mathrm{H}$ NMR spectrum of the second product showed coupling of the imidazole ring protons ($J 1 \mathrm{~Hz}$) at $\delta 7.65(5-\mathrm{H})$ and $\delta 7.86(2-\mathrm{H})$ together with a singlet at $\delta 8.35$ which is attributable to the pyridone $2-\mathrm{H}$. The formation of the pyridone $\mathbf{3 0}$ can be rationalised in terms of a mechanism in which the betaine $\mathbf{2 6 a} \leftrightarrow \mathbf{2 6 b}$ ring opens to the ketene intermediate 27 which then undergoes a hetero Diels-Alder reaction with dimethyl acetylenedicarboxylate to give the observed product 30 (Scheme 3).

Since the imidazole derivatives 17 are formed in good yield, they are attractive intermediates for further synthesis. They can be cyclised to the ethyl 7 -chloroimidazo[4,5-b] pyridine-6carboxylates 31 using phosphoryl chloride at reflux temperature and in this way the derivatives $\mathbf{3 1 e}, \mathbf{f}, \mathbf{m}, \mathbf{n}, \mathbf{p}$ were prepared in good yield (Scheme 4). Cyclisation of the 1-(2-hydroxyethyl)imidazole 171 resulted in formation of the 3 -(2-chloroethyl)

Scheme 4 Reagents and conditions: i, POCl_{3}, boil; ii, $\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}$, $\mathrm{EtO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$, boil; 3 h ; EtI, boil, 1 h ; iii, EtOH, $\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}, 0.5 \mathrm{~h}$; iv, $\mathrm{EtOH}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}$
derivative $\mathbf{3 1}$ p. If necessary, the 2-hydroxyethyl function can be protected by conversion into the 1-(2-acetoxyethyl)imidazole 17n which undergoes cyclisation to the derivative 31n. This preparation of ethyl 7 -chloro-imidazo $[4,5-b]$ pyridine-6-carboxylates $\mathbf{3 1}$ forms the basis of a new 1-deazapurine synthesis: ${ }^{4}$ the reactive intermediates 31 can be transformed into a variety of structural analogues of systems of biological significance. The derivatives $\mathbf{3 1 e}, \mathbf{m}$ were transformed to the nalidixic acid ${ }^{5}$

Scheme 5 Reagents and conditions: i, $\mathrm{R}^{3} \mathrm{NH}_{2}, \mathrm{EtOH}$, boil; ii, EtOH, NaOH , boil; HCl ; iii, Dowtherm, boil; iv, $\mathrm{NaOH}, \mathrm{EtOH}$, boil
In formulae 34-37;

$$
\begin{aligned}
& \text { a } \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}^{3}=\mathrm{NHnBu} \\
& \text { b } \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}^{3}=\mathrm{NHCH}_{2} \mathrm{Ph} \\
& \text { c } \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}^{3}=\text { morpholin-1-yl } \\
& \text { d } \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}^{3}=\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NMe}_{2} \\
& \text { e } \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}^{3}=\mathrm{NHCH}_{2} \mathrm{CH}=\mathrm{CMe}_{2} \\
& \text { f } \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}^{3}=\mathrm{NH}_{2} \\
& \text { g } \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}^{3}=\mathrm{NHNH}_{2} \\
& \text { h } \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}^{3}=\mathrm{NHNHPh}^{2} \\
& \text { i } \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}^{3}=\mathrm{SCH}_{2} \mathrm{Ph} \\
& \text { j } \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}^{3}=\mathrm{OEt} \\
& \text { k } \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}^{3}=\mathrm{OCH}_{2} \mathrm{Ph} \\
& \text { I } \mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}^{3}=\mathrm{NHnBu} \\
& m \mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}^{3}=\mathrm{NHCH}_{2} \mathrm{Ph} \\
& \text { n } \mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}^{3}=\mathrm{NH}_{2} \\
& \text { o } \mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}^{3}=\mathrm{NHNHPh} \\
& \text { p } \mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}^{3}=\text { NHfurfuryl } \\
& \text { q } \mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OAc}, \mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}^{3}=\text { NHfurfuryl } \\
& \text { r } \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\operatorname{Pr}^{\mathrm{i}}, \mathrm{R}^{3}=\mathrm{NHCH}_{2} \mathrm{Ph} \\
& \text { s } \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{Pr}^{\mathrm{i}}, \mathrm{R}^{3}=\mathrm{NHCH}_{2} \mathrm{CH}=\mathrm{CMe}_{2} \\
& \text { t } \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}^{4}=\mathrm{H} \\
& \text { u } \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}^{4}=\mathrm{Ph} \\
& \text { v } \mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}^{4}=\mathrm{Ph}
\end{aligned}
$$

analogues 32e, \mathbf{m} using the following procedure: i, hydrolysis with $10 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$ in hot ethoxyethanol solution; ii, alkylation by addition of ethyl iodide; and iii, saponification to give the carboxylic acid. The chlorine atom of the derivatives 31 can be removed by catalytic reduction giving, for example, the 2,3-dimethylimidazo $[4,5-b$]pyridine 33e (58%) whose NMR spectrum shows meta coupled doublets ($J 2 \mathrm{~Hz}$) at $\delta 8.88(5-\mathrm{H})$ and $\delta 8.40(7-\mathrm{H})$. In this way, the derivatives 33 f , n were also prepared.

The chloro derivatives 31 readily undergo nucleophilic substitution and using nitrogen nucleophiles the derivatives 34a-h, l-s were prepared (Scheme 5). These derivatives include compounds with amine substituents chosen to provide analogues of the cytokinins, which are naturally occurring purine derivatives having growth-regulating properties in plants. ${ }^{6}$ In a similar manner using the appropriate alkoxide or thiolate the derivatives 34i-k were made. Saponification of the esters $34 a-e, k-n$ gave the corresponding carboxylic acids 35 which in the case of the derivatives $35 \mathrm{a}-\mathrm{e}$, n were decarboxylated thermally giving the $2,3,7$-trisubstituted imidazo-[4,5-b] pyridines $\mathbf{3 6 a - e}, \boldsymbol{n}$. In accord with expectation, cyclisation of the hydrazine derivatives $\mathbf{3 4 g}$, h, o occurred in hot ethanolic alkali giving the 1,2 -dihydroimidazo $[4,5-b]$ pyrazolo-[3,4-d]pyridin-3($6 H$)-ones 37t-v. A table of yields, melting points, microanalytical data, and NMR spectra of the derivatives $\mathbf{3 4 a - j}, \mathbf{l - s}, \mathbf{3 5 b}-\mathbf{e}, \mathbf{i}, \mathbf{k}-\mathrm{n}$, and $\mathbf{3 6 b}-\mathbf{e}, \mathbf{l}, \mathrm{n}$ has been deposited as Supplementary Information [Suppl. Publ. no. 56895 (11 pp.)].*

Reactions Utilising Ethoxymethylenemalononitriles 6 and 7.Treatment of a dioxane solution of 4 -aminoimidazole 1 a with ethoxymethylenemalononitrile 6 and subsequent concentration of the reaction solution gave a crystalline product which was identified by ${ }^{1} \mathrm{H}$ NMR spectroscopy as the N-additionelimination product 38a (82%). In particular, the weakly coupled ($J 1 \mathrm{~Hz}$) imidazole 2- and 5 -protons are clearly observed at $\delta 7.50$ and 6.75 and the olefinic proton appears as a singlet at $\delta 8.18$. None of the alternative C-addition-elimination product 39 a was detected and this is an interesting difference to the 5 -aminoimidazoles which give exclusively C-additionelimination products with this reagent 6.

Attempts to recrystallise compound 38a resulted in cyclisation to 4 -amino-3-cyanoimidazo $[1,5-a$]pyrimidine 40 a and we have found that this transformation $38 \mathrm{a} \rightarrow 40 \mathrm{a}$ is best

achieved by crystallisation from hot water. The 2-methyl derivative 41 was prepared from 4-aminoimidazole 1 la and the reagent 7 using a similar procedure. The structures of the imidazo[1,5-a]-pyrimidines 40 and 41 were fully supported by their analytical and spectroscopic properties.

[^0]Reaction of the 1 -substituted 4 -aminoimidazoles $\mathbf{1 e}, \mathbf{f}, \mathbf{k}$ with ethoxymethylenemalononitrile 6 gave the N-additionelimination products $\mathbf{3 8 e}, \mathbf{f}, \mathbf{k}$ and ${ }^{1} \mathrm{H}$ NMR spectroscopy ($5-\mathrm{H}$ δ 6.5-6.8) fully supported these structural assignments. However, it is interesting to note that amine 1 i gave a mixture of the N-addition-elimination product $38 \mathrm{i}\left\{\delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.\right.$-DMSO) 2.08 (s, COCH_{3}), $2.35\left(\mathrm{~s}, \mathrm{CCH}_{3}\right), 5.35\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{O}\right), 6.92(\mathrm{~s}, 5-\mathrm{H}), 8.22(\mathrm{~s}$, $\mathrm{HNCH})$ and 11.42 (br $\mathrm{s}, \mathrm{HNCH})\}$ and the C -additionelimination product 39i $\left\{\delta\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.\right.$-DMSO $2.05\left(\mathrm{~s}, \mathrm{COCH}_{3}\right)$, $2.40\left(\mathrm{~s}, \mathrm{CCH}_{3}\right), 5.90\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{O}\right), 7.13$ (br s, NH_{2}) and 7.73 (s, $\mathrm{CH})\} .{ }^{7}$ The factors which determine the regioselectivity of these addition-eliminations are clearly finely balanced.
In contrast to their reactions with diethyl ethoxymethylenemalonate 5 , 5 -aminoimidazoles 3 react with ethoxymethylenemalononitrile 6 to give exclusively, and in high yield, the C addition products, 5-amino-4-(2,2-dicyanovinyl)imidazoles 42. The TLC examination of the reaction mixtures revealed no other products. Typically, the amine 3 e in dioxane solution was stirred with a dioxane solution of the reagent 6 and the product 42e (84%) was precipitated as a yellow crystalline solid after several minutes. Analytical and spectroscopic data fully supported the structural assignments for compounds 42. The ${ }^{1} \mathrm{H}$ NMR spectra showed the presence of broad singlets corresponding to the protons of the primary amino groups and, significantly, imidazole 4-H signals were absent. Chemical evidence for the structures 42 was provided by cyclisation. When heated at $90^{\circ} \mathrm{C}$ in aqueous alcoholic sodium hydroxide the amines 42 cyclise in good yield to give 5 -amino-6cyanoimidazo[$4,5-b$] pyridines 43 . In this way, the derivatives 43e, f , I were prepared. The ${ }^{1} \mathrm{H}$ NMR spectra of these derivatives 43 are characterised by a broad signal at $\delta 6.4-6.6$ due to the primary amino groups at position 5 and a singlet in the region δ 8.0-8.1 due to the proton at position 7.

The imidazo $[4,5-b]$ pyridine derivatives 43 are versatile synthetic intermediates ${ }^{8}$ and their preparation in good overall yield from 5 -nitroimidazoles 4 provides the opportunity of preparing a variety of novel 1-deazapurine analogues. Some transformations of the 2,3-dimethyl derivative 43e, which are described below, illustrate the utility of these intermediates. The nitrile function of compound 43 e can be hydrolysed to the amide 44 using hot $0.2 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{KOH}$ or to the carboxylic acid 45 using hot $5 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$. The latter product 45 readily undergoes thermal decarboxylation thus providing a novel route to 5 -aminodeazapurines 46 . Treatment of the amine 43 e with nitrous acid gives the imidazo[4,5-b]pyridin-2-one 47.
A feature of the intermediates 43 is the opportunity they provide for synthesising tricyclic heterocyclic systems which can be regarded as elongated purine derivatives. Leonard and Hiremath ${ }^{9}$ have described such systems as 'stretched-out' purines and they have used them as dimensional probes to investigate the requirements of enzymic reactions. Their studies ${ }^{9}$ mainly focused on the use of a benzene ring as a spacer group between the pyrimidine ring and the imidazole ring of purines. Using the dimethyl derivative 43 e we have prepared a number of 'stretched-out' purine analogues in which the spacer group is a pyridine ring (Scheme 6). Reaction of compound 43e with triethyl orthoformate gave the imino ether $51(53 \%)$ which upon treatment with primary amines in ethanol solution resulted in cyclocondensation giving the 8 -iminoimidazo[$\left.4^{\prime}, 5^{\prime}: 5,6\right]$ pyrido $[2,3-d]$ pyrimidines 54 . Reaction of these compounds 54 with a further portion of the appropriate primary amine in glacial acetic acid gave the isomeric 8 -aminoimidazo[$\left.4^{\prime}, 5^{\prime}: 5,6\right]$ pyrido[$\left.2,3-d\right]$ pyrimidines 55 in good yields. This Dimroth rearrangement ${ }^{10} 54 \rightarrow 55$ presumably occurs by acidcatalysed ring opening by the amine followed by recyclisation to the more stable isomer.

The parent 8 -amino derivative $\mathbf{5 5}$ a was formed directly from the intermediate 51 by treatment with saturated ethanolic

$49 R=P h, X=S$

Scheme 6 Reagents and conditions: i, $\mathrm{NaNO}_{2}, \mathrm{HCl}_{(\mathrm{aq})}, 20^{\circ} \mathrm{C}, 0.5 \mathrm{~h}$; ii, $3,4-\mathrm{Cl}_{2} \mathrm{PhNCO}$ or $\mathrm{PhNCS}, \mathrm{DMF}, 100^{\circ} \mathrm{C}, 6 \mathrm{~h}$; iii, KOH, EtOH, $\mathrm{PhCHO}, 60^{\circ} \mathrm{C}, 30 \mathrm{~h}$; iv, (EtO) ${ }_{3} \mathrm{CH}$, tosic acid, reflux, $3 \mathrm{~h} ; \mathrm{v}, \mathrm{HCO}_{2} \mathrm{H}$, $100^{\circ} \mathrm{C}, 24 \mathrm{~h}$; vi, PhNO_{2}, reflux, 5 h ; vii, EtOH, $\mathrm{RNH}_{2}, 20^{\circ} \mathrm{C}, 18 \mathrm{~h}$; viii, $\mathrm{HCl}_{(\text {aq })}$, reflux, 2.5 h ; ix, $\mathrm{EtOH}, \mathrm{AcOH}, \mathrm{RNH}_{2}$, reflux, 2 h
In formulae 54 and 55 : $\mathbf{a}, \mathrm{R}=\mathrm{H} ; \mathbf{b}, \mathrm{R}=\mathrm{Bu} ; \mathbf{c}, \mathrm{R}=\mathrm{CH}_{2} \mathrm{Ph} ; \mathbf{d}, \mathrm{R}=$ morpholin-4-ylpropyl; e, $\mathrm{R}=2$-furylmethyl; $\mathbf{f}, \mathrm{R}=2$-pyridylmethyl; $\mathrm{g}, \mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH} ; \mathbf{h}, \mathrm{R}=4$-methylpyrazin-1-ylpropyl; $\mathrm{i}, \mathrm{R}=\mathrm{Ac}$.
ammonia; the imino tautomer 54a if formed rapidly equilibrates with the more stable amino isomer 55a. Hydrolysis of this amine 55a using hot $2 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ hydrochloric acid gave the 8 -oxo derivative 52 which was also formed by the reaction of the 5 -amino-6-cyanoimidazo[4,5-b] pyridine 43e with hot 90% formic acid. With acetic anhydride, the amine 55a gave the amide 55 i .

With phenyl isothiocyanate in DMF solution, compound 43e gave, after heating at $100^{\circ} \mathrm{C}$, the tricyclic derivative 49 and a similar procedure using 3,4-dichlorophenyl isocyanate gave the derivative 48. When treated with benzaldehyde and potassium hydroxide in hot ethanol the intermediate 43e gave compound 50 which could be oxidised to the aromatic system 53 thermally in nitrobenzene. The tetracyclic system 57 was prepared by condensation of compound 43e with cyclohexane-1,3-dione in hot toluene in the presence of toluene-p-sulfonic acid and cyclisation of the resulting intermediate 56 using zinc chloride in hot xylene.

59
$61 R=E$
$62 \mathrm{R}=\mathrm{H}$
Scheme 7 Reagents and conditions: i, Dowtherm, reflux, 0.5 h ; ii, POCl_{3}, reflux, 0.25 h ; iii, DMF, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{EtI}, 100^{\circ} \mathrm{C}, 1.5 \mathrm{~h}$; iv, $\mathrm{KOH}_{(\mathrm{aq})}$, reflux, $18 \mathrm{~h} ; \mathrm{v}, \mathrm{BuNH}_{2}$, EtOH, reflux, 2 h

Further examples of novel tricyclic systems (Scheme 7) were prepared from compound 58 which was readily obtained by condensation of the amine 46 with diethyl ethoxymethylenemalonate 5. Thermal cyclisation of compound 58 gave the compound 59 which with phosphoryl chloride gave the 8chloro derivative 60 . Subsequent treatment with butylamine in ethanol gave the 8 -butylamino derivative 63. Alkylation of compound 59 using ethyl iodide and potassium carbonate gave the ester 61 which was converted into the novel nalidixic acid derivative 62 using $2 \mathrm{~mol} \mathrm{dm}^{-3}$ potassium hydroxide.

Reactions Utilising Ethyl(Ethoxymethylene)cyanoacetate 8.When the 5 -aminoimidazoles 3 e , f , I were allowed to react with ethyl (ethoxymethylene)cyanoacetate 8 in dioxane solution in a manner similar to that used for ethoxymethylenemalononitrile 6 the products were exclusively the 3-(5-aminoimidazol-4-yl)-2cyanoacrylates 64 which are C-adducts. None of the isomers resulting from condensation on the amino group were detected. Typically, the amine 3 e gave the cyanoacrylate 64 e which had a ${ }^{1} \mathrm{H}$ NMR spectrum comparable to the analogues 18 e and 42e. In compound 64e only one set of ethyl signals was observed implying that a single geometric isomer is formed but this is not necessarily the trans ester structure depicted in structure 64 e .
Thermal cyclisation of compound 64 e gave the imidazo[4,5b]pyridine $65 \mathrm{e}\left(70 \%\right.$), m.p. $176-177^{\circ} \mathrm{C}$, which had a ${ }^{1} \mathrm{H}$ NMR spectrum similar to the closely related derivatives 43e, 44, 45 and 46 . The alternative cyclisation giving the 5 -oxoimidazo-[4,5-b]pyridine 47, m.p. $>360^{\circ} \mathrm{C}$, was not observed. Chemical reactions of the esters 65 were not further explored since similar products were also accessible from the analogous nitriles 43 (e.g. Scheme 6).

Reactions Utilising Ethoxymethyleneurethane 9.-In situ generation of the 4 -aminoimidazoles $1 \mathbf{a}, \mathbf{e}, \mathrm{~h}$ in dioxane solution followed by addition of ethoxymethyleneurethane 9 gave the ethyl[(imidazol-4-yl)aminomethylene]carbamates 66a, e, \mathbf{h} in good yield. The structures 66 were fully supported by elemental analysis and their spectroscopic properties. In particular, ${ }^{1} \mathrm{H}$ NMR spectroscopy showed the presence of imidazole $5-\mathrm{H}$ (δ 6.70-6.95), which, in the case of the derivatives $66 \mathrm{a}, \mathrm{h}$, were coupled with $2-\mathrm{H}$, and also exchangeable protons (NH) in the region $\delta 10.35-10.50$. This evidence confirms that the reagent 9 has condensed with the amino function of the 4 -aminoimidazoles 1.

Cyclisation of the parent derivative 66a in hot ethanol solution using potassium carbonate gave the potassium salt 67 (75%) which upon treatment with hot aqueous acetic acid was converted into imidazo $[1,5-a]-1,3,5$-triazin-4-one 68a (66%). This novel heterocycle 68a showed a carbonyl absorption at $1740 \mathrm{~cm}^{-1}$ in its IR spectrum. The ${ }^{1} \mathrm{H}$ NMR spectrum revealed doublets at $\delta 8.34$ and $7.25(J 1 \mathrm{~Hz})$ corresponding to the 6 - and $8-\mathrm{H}$ together with a singlet at $\delta 7.76$ attributable to $2-\mathrm{H}$ and a broad exchangeable signal at $\delta 12.40(\mathrm{NH})$. The UV spectrum showed a single absorption band at $255 \mathrm{~nm}(\varepsilon 7650)$.

Treatment of the potassium salt 67 with alkyl halides gave good yields of the N-alkyl derivatives 68. For example, a suspension of the salt 67 in dimethylformamide was warmed with methyl iodide to give the 3-methyl derivative 68b (80%) and compounds $68 \mathrm{c}-\mathrm{e}$ were obtained in a similar manner. The derivatives $\mathbf{6 8 b}-\mathrm{e}$ show a carbonyl absorption in the region $1720-1740 \mathrm{~cm}^{-1}$ thus providing strong evidence that N alkylation has occurred.

Evidence that $\mathrm{N}-3$ rather than $\mathrm{N}-1$ or $\mathrm{N}-7$ alkylation had occurred was provided using ${ }^{1} \mathrm{H} /{ }^{1} \mathrm{H}$ nuclear Overhauser enhancement (NOE) difference spectroscopy on compound 68 e . A nuclear Overhauser enhancement existed between the 2-H proton and the methylene group $\left(\mathrm{CH}_{2}\right)$ of the isopentenyl side chain but no enhancement was observed between $8-\mathrm{H}$ and the isopentenyl CH_{2} group. This observation infers that compound 68e inas the proposed structure. NOE experiments with compound 68 c showed a similar effect.

Reaction of the 5 -aminoimidazoles $3 \mathbf{e}, \mathbf{k}$, l with ethoxymethyleneurethane 9 in dioxane solution at ambient temperature was complete within 1 h and gave exclusively the ethyl N -[(imidazol-5-yl)aminomethylene]carbamates 69e, k, l. There was no evidence, including that from the TLC examination of the mother liquors, of formation of C-addition-elimination

In formula 71: $a, R^{1}=R^{2}=R^{3}=H ; b, R^{1}=R^{3}=H, R^{2}=M e ; ~ c$, $\mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{OCOMe}, \mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}^{3}=\mathbf{H} ; \mathbf{d}, \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{Me} ; \mathbf{e}$, $\mathrm{R}^{1}=\mathrm{R}^{3}=\mathrm{Me}, \mathrm{R}^{2}=\operatorname{Pr}^{\mathrm{i}} ; \mathbf{f}, \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{SMe}$
In formulae 72 and $73: a, R^{1}=R^{2}=H ; b, R^{1}=M e, R^{2}=H ; c$, $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Me} ; \mathbf{d}, \mathrm{R}^{1}=\mathrm{SMe}, \mathrm{R}^{2}=\mathrm{H}$
products analogous to those formed with other reagents. The product 69e was obtained as a colourless solid and the structure was fully confirmed by analytical and spectroscopic data. The ${ }^{1} \mathrm{H}$ NMR spectrum clearly showed an imidazole 4-H at $(\delta 6.75)$ and there was only one exchangeable proton ($\delta 10.65$) which was attributed to the NH of the aminomethylene fragment.

Thermal cyclisation of the derivatives 69e, l gave the hypoxanthines $70 \mathrm{e}, \mathrm{I}$ in good yield. The ester carbonyl absorption ($1730 \mathrm{~cm}^{-1}$) of the precursors 69 was absent in the products 70 which were associated with a carbonyl absorption at $1680 \mathrm{~cm}^{-1}$, indicating that these purines exist as the 6 -oxo tautomers 70. ${ }^{11}$ These transformations $(3 \rightarrow 69 \rightarrow 70)$ represent a new hypoxanthine synthesis which can be achieved in good yield and essentially in two steps from 5-nitroimidazoles 4.

Reactions utilising Ethyl N-Cyanoformimidate 10, Ethyl NCyanoacetimidate 11 and $\mathrm{S}, \mathrm{S}^{\prime}$-Dimethyl- N -Cyanodithioiminocarbonate 12.-Reaction of 4 -aminoimidazole 1a in dioxane solution with ethyl N-cyanoformimidate 10 gave a good yield of the N-cyano- N^{\prime}-(imidazol-4-yl)formamidine 71a (73%). Similar procedures gave the derivatives 71b, c and with ethyl N cyanoacetimidate 11 as condensing agent the derivatives 71d, e were formed. Condensation of the amine 1a with the dithio reagent 12 gave the 4-amino-2-methylthioimidazo[1,5-a]-1,3,5triazine $72\left(\mathrm{R}^{1}=\mathrm{SMe}, \mathrm{R}^{2}=\mathrm{H}\right)(81 \%)$. The acyclic intermediate 71 f was not encountered and probably cyclised under the reaction conditions. The derivatives 71a, b, d were transformed into the corresponding 4-aminoimidazo[1,5-a]-1,3,5-triazines 72 during recrystallisation from hot water.

The structures of the imidazo[1,5-a]-1,3,5-triazines 72 and the isomeric amidine precursors 71 were fully supported by their spectroscopic properties. The IR spectra of the amidines all show a strong absorption in the nitrile stretch region ($v_{\text {max }}$ $2180-2200 \mathrm{~cm}^{-1}$) which disappeared upon cyclisation. Furthermore, the ${ }^{1} \mathrm{H}$ NMR spectra of the amidines showed the presence of imidazole $5-\mathrm{H}(\delta 7.15-7.40)$ demonstrating that condensation had taken place on the amino function.

The ${ }^{1} \mathrm{H}$ NMR spectra of the 4 -aminoimidazo[1,5-a]-1,3,5triazines 72 show the amino group as a broad singlet in the region $\delta 7.75-8.60$. A study of the spectra of the 2 -methyl and 6-methyl derivatives $\mathbf{7 2 b}$ and $\mathbf{7 2}$ c confirmed the following assignments of the ring protons in the parent heterocycle: $\delta 7.88$ $(2-\mathrm{H}), 8.42(6-\mathrm{H})$ and $7.26(8-\mathrm{H})$. The amines 72 were obtained as high melting solids which underwent typical amine reactions with electrophilic reagents. Reaction of the parent amine 72a with phenyl isocyanate gave the urea $74(\mathrm{R}=\mathrm{Ph})$ and reaction with benzoic anhydride at $180^{\circ} \mathrm{C}$ gave the benzamide 76a. A similar procedure yielded the urea $74\left(\mathrm{R}=3,4-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)$ and the use of hot acetic anhydride gave the acetamide derivatives 73a-c. Treatment of the parent amine 72a with benzoyl chloride in dimethylformamide in the presence of potassium carbonate gave the N, N-dimethylformamidine $75(\mathrm{R}=\mathrm{H})$ and reaction with diethyl ethoxymethylene malonate 5 gave the novel tricyclic system 77.

When the 2-methylthio derivative 72d was allowed to react with primary amines an interesting and unexpected transformation took place (Scheme 8). We expected that the

74

75
76a $R=H$ b $\mathrm{R}=\mathrm{Br}$

2-methylthio function would be displaced by the amine nucleophile but instead the 4 -amino group was replaced. Typically, treatment of compound 72d with furfurylamine in ethoxyethanol at reflux temperature gave the 4-furfurylamino derivative 78a (39%) and a similar procedure with the appropriate primary amine gave the derivatives $78 \mathrm{~b}-\mathrm{f}$ (Scheme 8). We interpret this reaction $(\mathbf{7 2 d} \rightarrow 78)$ as proceeding via a

Scheme 8 Reagents and conditions: i, RNH_{2}, 2-ethoxyethanol, reflux, 40 h
base-catalysed ring opening to a carbodiimide followed by addition of the primary amine to form an intermediate guanidine which can recyclise with elimination of ammonia to form the observed product. An attempted repeat of the reaction with 4-aminoimidazo[1,5-a]-1,3,5-triazine 72a gave only a complex mixture of products.

Electrophilic substitution of the imidazo[1,5-a]-1,3,5-triazine system 72 was investigated using the benzamide derivative 76a. Treatment of a suspension of compound 76a in dimethylformamide solution with phosphoryl chloride and subsequent hydrolysis resulted in Vilsmeier-Haack formylation at position 8. Interestingly, the N-benzamido group was simultaneously transformed into an amidino group giving compound 75 ($\mathrm{R}=\mathrm{CHO}$) (41%) as the isolated product. The mechanism of formation of the amidino function presumably involves addition of the Vilsmeier reagent $\left(\mathrm{Me}_{2} \mathrm{~N}^{+}=\mathrm{CHOPO} \cdot \mathrm{Cl}_{2}\right)$ to the amide nitrogen followed by elimination of benzoyl chloride. Evidence that formylation had occurred at the 8 -position was provided by a comparison of the ${ }^{1} \mathrm{H}$ NMR spectrum of the product $75(\mathrm{R}=\mathrm{CHO})$ with that of the parent formamidine structure $75(\mathrm{R}=\mathrm{H})$. In particular, coupling between the aromatic protons was absent in the spectrum of the aldehyde and a signal at $c a . \delta 7.4$, which had been attributed to $8-\mathrm{H}$ in the parent molecule $75(\mathrm{R}=\mathrm{H})$, was also absent. In compound 75 $(\mathrm{R}=\mathrm{CHO}) 2-\mathrm{H}$ and $6-\mathrm{H}(\delta 8.30$ and 8.55$)$ were shifted downfield by ca. 0.3 ppm relative to the corresponding signals in the
parent compound ($\delta 8.00$ and 8.28), which is consistent with the location of an electronegative formyl group at position 8 .

Attempted bromination of the benzamide 76a with N bromosuccinimide in carbon tetrachloride solution was unsuccessful. A good yield (76%) of the 8 -bromo derivative 76b was obtained by treating a warm solution of the benzamide 76a in a mixture of acetic and trifluoroacetic acids with bromine. The position of substitution was confirmed by comparison of the ${ }^{1} \mathrm{H}$ NMR spectrum of the bromo compound 76 b with that of the precursor 76a. As in the case of the 8 -formyl derivative $75(\mathrm{R}=\mathrm{CHO})$, the highfield aromatic proton $\delta 7.33$ in the starting material 76a was absent in the product 76b.

An unexpected fragmentation was discovered when we investigated the nucleophilic substitution of the 8 -bromo derivative 76b with amines. Treatment of a hot ethanol solution of compound 76b with propylamine gave, after purification by chromatography, N-benzoyl- N^{\prime}-propylguanidine $79(44 \%$) as pale orange crystals. We have rationalised the formation of this product by a mechanism (Scheme 9) similar to that proposed for the formation of the amines 78 (Scheme 8). Base-catalysed ring opening can give the carbodiimide 81 which with propylamine forms the guanidine intermediate 82 (Scheme 9).

Scheme 9 Reagents and conditions: i, PrNH_{2}, ethanol, reflux
In this reaction, however, instead of recyclisation (cf. Scheme 8) fragmentation leading to an isonitrile 80 b and the isolated product 79 can occur. Although not isolated, the strong characteristic odour of an isonitrile was produced during the reaction. According to the proposed mechanism (Scheme 9), formation of the guanidine 79 should take place irrespective of the substituent at position 8 of the benzamide. When the parent benzamide 76a was treated with propylamine under the same conditions the guanidine 79 was again isolated and shown to be identical with the sample obtained from compound 76b. A strong isonitrile odour was again detected in the reaction mixture and evidence for the formation of the isonitrile 80a was obtained using FAB mass spectrometry on a freshly prepared sample of the reaction mixture. In addition to starting material 76a, the major signals in the spectrum has masses consistent with the presence of the guanidine 79 and the isonitrile 80a.

When 1 equiv. of ethyl N-cyanoformimidate 10 was added to a solution of each of the 5 -aminoimidazoles $3 \mathbf{e}, \mathbf{f}, \mathbf{k}$ in dioxane solution at ambient temperature, reaction was complete in a few minutes. The products were shown to be two component mixtures which were separated by chromatography and identified as the pairs of isomers 83a, b, d and 84a, b, d (Scheme 10). Table 2 shows the isolated yields. When the amine 31 was used, only a single product 83 c was obtained in very low yield (8%). The reason for this low yield is not clear since the amine 31 reacted

Scheme 10 Reagents and conditions: i, Dioxane, EtOCH=NCN, $25^{\circ} \mathrm{C}$, 1 h ; ii, decalin, reflux, 1 min ; iii, $200^{\circ} \mathrm{C}, 1 \mathrm{~min}$; iv, $\mathrm{Ac}_{2} \mathrm{O}$ or $\mathrm{Bz}_{2} \mathrm{O}$ heat, 10 min
In formulae 83-87; $\mathbf{a}, \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}^{3}=\mathrm{H} ; \mathbf{b}, \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=$ $\mathrm{R}^{3}=\mathrm{H} ; \mathbf{c}, \mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}^{3}=\mathrm{H} ; \mathrm{d}, \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=$ $\mathrm{Pr}^{\mathbf{i}}, \mathrm{R}^{3}=\mathrm{H} ; \mathbf{e}, \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}^{3}=\mathrm{SMe} ; \mathbf{f}, \mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$, $\mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}^{3}=\mathrm{SMe} ; \mathrm{g}, \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{SMe}$
with other reagents to give products in yields comparable to those given by other 5-aminoimidazoles 3 .

Analytical and spectroscopic data confirmed the structural assignments 83 and 84 but the complexity of the ${ }^{1} \mathrm{H}$ NMR spectra of the amidines 84a, \mathbf{b}, \mathbf{d} required further examination. In $\left[{ }^{2} \mathrm{H}_{6}\right]$-DMSO solution at room temperature these compounds 84a, \mathbf{b}, \mathbf{d} appeared to be mixtures of two isomers in the ratio of $c a$. 3:1. For compound 84a at ambient temperature, there were six sharp signals appearing in pairs in the ratio of $3: 1$ at $\delta 2.37$ and $2.30,3.47$ and 3.39 and 7.02 and 6.77. Upon the addition of $\mathrm{D}_{2} \mathrm{O}$ a seventh signal at $\delta 8.18$ separated into a pair of singlets and the NH signal, which was a very broad peak at $\delta 4.5$, disappeared. When the ${ }^{1} \mathrm{H}$ NMR spectrum of compound 84a was run at increasingly higher temperatures the pairs of signals collapsed with a coalescence temperature of $80-90^{\circ} \mathrm{C}$. At $100^{\circ} \mathrm{C}$ the spectrum was consistent with a single structure with singlet signals observed at $\delta 2.33\left(\mathrm{C}-\mathrm{CH}_{3}\right), 3.43\left(\mathrm{~N}-\mathrm{CH}_{3}\right)$, 4.5 (br, NH), $6.85(4-\mathrm{H})$ and 8.17 (formamidine H). This phenomenon can be understood in terms of interconversion between four possible isomers (Scheme 11) which can inter-

Scheme 11

Table 2 Products formed from the reaction of 5-aminoimidazoles 3 with either ethyl N-cyanoformimidate 10 or S, S^{\prime}-dimethyl- N-cyanodithioiminocarbonate 12

| | | Product yields (\%) | |
| :--- | :--- | :--- | :--- | :--- |
| Amine | Reagent | $\mathbf{8 3}$ | $\mathbf{8 4}$ |
| $\mathbf{3 e}$ | $\mathbf{1 0}$ | 23 | 26 |
| $\mathbf{3 k}$ | $\mathbf{1 0}$ | 4 | 42 |
| $\mathbf{3 1}$ | $\mathbf{1 0}$ | 8 | - |
| $\mathbf{3 f}$ | $\mathbf{1 0}$ | 36 | 11 |
| $\mathbf{3 e}$ | $\mathbf{1 2}$ | 47 | - |
| $\mathbf{3 k}$ | $\mathbf{1 2}$ | 10 | $\mathbf{3 2}$ |
| $\mathbf{3 1}$ | $\mathbf{1 2}$ | 10.5 | - |

> Calculated (AM1) LUMO energy (eV) of electrophilic reagent

Fig. 1 Relative yields of C - and N -adducts from the reaction of 5 aminoimidazoles with various electrophilic reagents in dioxane ($\boldsymbol{\ominus}$) or ethanol (O)
convert either by a process of stereomutation (e.g. 88 $\rightleftharpoons 89$) or [1,3]-prototropic shift (e.g. 88 $\rightleftharpoons \mathbf{9 0}$). At room temperature the ${ }^{1} \mathrm{H}$ NMR spectrum shows a mixture of signals but only two of the four possible isomers (Scheme 11) are observed to be populated. It was not possible to make assignments to two particular isomers.

Bellora et al. ${ }^{12}$ have reported the synthesis of a series of N -aryl- N^{\prime}-cyanoformamidines (ArNHCH=NCN) together with details of their ${ }^{1} \mathrm{H}$ NMR spectra, which are complex but which were not rationalised by the authors. Using the published method, ${ }^{12}$ we have resynthesised the p-methoxyphenyl derivative and examined its ${ }^{1} \mathrm{H}$ NMR spectrum. At ambient temperature in $\left[{ }^{2} \mathrm{H}_{6}\right]$-DMSO solution a complex spectrum was obtained. Upon increasing the temperature to $100^{\circ} \mathrm{C}$ broadening of the peaks had occurred and at $160^{\circ} \mathrm{C}$ coalescence of the signals took place. We conclude that a similar process to that observed for compound 84a is taking place (i.e. stereomutation or $[1,3]$ prototropic shift) and this appears to be a general property of this type of N-cyanoformamidine.

The ${ }^{1} \mathrm{H}$ NMR spectra of the amidines $71\left(\mathrm{R}^{3}=\mathrm{H}\right)$ formed from 4-aminoimidazoles 1 also showed evidence of the molecules existing in two isomeric forms which interconvert either by a process of [1,3]-prototropic shift or stereomutation. However, in these compounds 71 there was a much greater predominence of one isomer over the other ($>10: 1$ by integration of signals) and only the signals of the major isomers were recorded.

Condensation of S, S^{\prime}-dimethyl N-cyanodithioiminocarbonate 12 with the amines $3 \mathbf{e}, \mathbf{k}$, I was achieved in dioxane. In each case TLC examination of the reaction mixture showed that a
multicomponent mixture had been formed and condensation products were isolated either by crystallisation or medium pressure liquid chromatography. In each case the C-additionelimination products 83 were obtained and the isolated yields are shown in Table 2. The ${ }^{1} \mathrm{H}$ NMR spectra of the derivatives 83e, f, g showed the absence of imidazole 4-H. Only in the case of 5-amino-1-methylimidazole 3 k was an N -addition-elimination product (i.e. 84 g) isolated from the reaction mixture (Table 2).

Thermal cyclisation of the N-[(5-amino- $1 H$-imidazol-4-yl)methylene]cyanamides 83 provides a new route to 2 -aminopurines 86. Typically, compound 83a was heated under reflux in decahydronaphthalene to give a single product which was identified as 2-amino-8,9-dimethyl-9H-purine 86a (77\%). In a similar manner, the 2 -aminopurine derivatives $86 \mathrm{~b}-\mathrm{g}$ were prepared from the precursors $83 \mathrm{~b}-\mathrm{g}$ in $60-80 \%$ yield. This route to 2 -aminopurines 86 from 5-nitroimidazoles 4 provides a useful alternative to the usual approach ${ }^{13}$ which starts with pyrimidine derivatives. The amine 86d when heated under reflux (10 min) with acetic anhydride, gave both the monoacetamide 85d ($R^{4}=H, R^{5}=A c$) (26%) and the diacetamide 85d ($R^{4}=$ $\left.R^{5}=A c\right)(55 \%)$. With benzoic anhydride the benzamide 85d $\left(R^{4}=H, R^{5}=B z\right)$ was formed (47%). The structures of all the purines 85 and 86a-g were consistent with their analytical and spectroscopic data and provide further confirmation of the structures 83.

Thermal cyclisation of the N-addition-elimination products 84 gives 9 -substituted adenines 87 . Thus compound $\mathbf{8 4 b}$ when heated at $200^{\circ} \mathrm{C}$ without solvent cyclised to the 6 -aminopurine 87b. A similar procedure gave the derivative 87 g (m.p. $274-276{ }^{\circ} \mathrm{C}$) which was previously obtained by Todd and coworkers ${ }^{14}$ (m.p. $261-262^{\circ} \mathrm{C}$) by methylation of 2-methylthioadenine.

A Frontier Molecular Orbital (FMO) Analysis.-In the preceding paper ${ }^{1}$ we have described a molecular orbital (MO) study of 4- and 5-aminoimidazoles 1 and 3 and 4- and 5nitroimidazoles 2 and 4. This analysis has led us to conclude that C-addition to aminoimidazoles is favoured by soft electrophiles whereas N-addition is favoured by hard electrophiles. We now describe the extension of our FMO analysis to the addition-elimination reactions of 5-aminoimidazoles 3 with the reagents 5-12. MO calculations were carried out using the AM1 method. An introduction to our approach together with supporting data can be found in the preceding paper. ${ }^{1}$

Calculated properties of a series of electrophilic reagents, some of which we have allowed to react with 5-aminoimidazoles 3, ${ }^{1}$ are given in Table 3. These molecules are arranged in order of increasing softness as measured by the calculated LUMO energy. The relative yields of N and C addition-protonation or addition-elimination products obtained when simple 5aminoimidazoles 3 were treated with a number of these reagents are summarised in Fig. 1. In particular, Fig. 1 shows a plot of the relative yields of N and C products versus the LUMO energies of specific reagents. Experimental details of these reactions are described here and in the preceding paper. ${ }^{1}$ The relative yield for each reagent shown in Fig. 1 is the averaged value of the yields for all 5-aminoimidazole derivatives 3 which were treated with the reagent. We emphasise that our programme of work was directed towards synthetic targets and the yields discussed are isolated yields. Nevertheless, crude reaction mixtures were routinely monitored using TLC to determine the absence or presence of products and the yields of isolated products, often obtained using MPLC, are a reliable guide to the actual product ratios.

Inspection of Fig. 1 reveals an interesting trend in the mode of reaction of 5 -aminoimidazoles 3 with electrophilic reagents and our experimental and theoretical studies have led us to make the following general observations. i, Reagents with a

Fig. 2 Frontier orbital interactions for the proposed reaction between 5-nitroimidazoles 4 and 5-aminoimidazoles 3 to give diimidazoles via the intermediates 92
calculated LUMO energy $>0.0 \mathrm{eV}$ do not appear to readily undergo electrophilic addition reactions with the amines 3. For example, ethyl propiolate did not react with 5 -aminoimidazoles 3. ii, Reagents with a calculated (AM1) LUMO energy in the range $0.0 \mathrm{eV}>$ LUMO $>-0.5 \mathrm{eV}$ react predominantly on the exocyclic nitrogen atom. iii, Reagents with a calculated (AM1) LUMO energy $<-0.5 \mathrm{eV}$ react predominantly on C-4 of the imidazole. The calculations described in the preceding paper ${ }^{1}$ demonstrate that 5 -aminoimidazoles $\mathbf{3}$ can be expected to behave as soft nucleophiles and that soft electrophilic reagents should favour reaction on C-4. We, therefore, attribute the preference of reagents with a LUMO energy $<-0.5 \mathrm{eV}$ for reaction on carbon (Fig. 1) as due to the contribution of frontier orbital interactions to transition state stabilisation. Presumably, for reagents with higher LUMO energies reaction on carbon is less favoured due to smaller frontier orbital interactions.

Although the FMO analysis described above highlights an interesting trend in the reactions of 5 -aminoimidazoles 3 with electrophilic reagents, there are two notable anomalies in the data which we have presented (Fig. 1). Whereas ethoxymethyleneurethane ($\mathrm{EtOCH}=\mathrm{NCO}_{2} \mathrm{Et}$) gave exclusively N -additionelimination products, ethyl N-cyanoformimidate (EtOCH= $\mathrm{NC} \equiv \mathrm{N}$) gives mixtures of N - and C -addition-elimination products of widely varying composition depending upon the nature of the ring substituents R^{1} and R^{2} in 3 . Since the calculated LUMO energies of these two reagents differ by only 0.06 eV , this suggests that, not surprisingly, other steric and electronic effects contribute to the outcome of the reaction. It is tempting to speculate on what these effects may be but we feel that any further analysis of the results would seriously risk overinterpretation of the data. It is noteworthy, however, that another reagent which shows a variation in product composition is S, S^{\prime}-dimethyl N-cyanodithioiminocarbonate [(MeS) $)_{2}-$ $\mathrm{C}=\mathrm{NC} \equiv \mathrm{N}]$ and this also contains the N-cyanoimino function ($\mathrm{C}=\mathrm{NC} \equiv \mathrm{N}$).

We have suggested (Scheme 1) that diimidazole products 15 formed during the catalytic reduction of nitroimidazoles may be produced by reaction of the nitroimidazole with its aminoimidazole reduction product. Inspection of Table 3
reveals that 5 -nitroimidazoles, exemplified by 2 -methyl- 5 nitroimidazole 4b, have a very low energy LUMO and should be classified as soft electrophiles. Indeed, they are calculated to be softer than DMAD and, like DMAD, can be expected to be reactive towards the ring carbon atoms of 4 - and 5aminoimidazoles 1 and 3. Fig. 2 shows the favourable frontier orbital mixing during formation of the proposed intermediate 92 from a 5 -aminoimidazole 3 and a 5 -nitroimidazole 4. The calculated electronic properties are, therefore, consistent with the mechanism which we have proposed in an earlier section (Scheme 1) for the formation of diimidazoles.

We have suggested that the particularly high yields of diimidazole by-products $\mathbf{1 5}$ formed during the reduction of 1unsubstituted 4-nitroimidazoles $2\left(\mathrm{R}^{1}=\mathrm{H}\right)$ are possibly due to the opportunity for these molecules to tautomerise to give a 5nitroimidazole $4\left(R^{1}=H\right)$. Inspection of Table 3 reveals that 5 -nitroimidazoles can be expected to be more reactive than 4 nitroimidazoles towards electron-rich species such as aminoimidazoles. We cannot rule out the possibility that it is the opportunity for the 4 -aminoimidazole reduction products 1 $\left(\mathrm{R}^{1}=\mathrm{H}\right)$ to tautomerise to 5 -aminoimidazoles $3\left(\mathrm{R}^{1}=\mathrm{H}\right)$ which is an essential step in the mechanism of formation of diimidazole products. The calculated properties ${ }^{1}$ however, suggest that 4 - and 5 -aminoimidazoles should be equally reactive towards electrophiles.

We have observed that, in contrast to the 2 -alkyl-4nitroimidazoles $2\left(R^{1}=H, R^{2}=\right.$ alkyl), unsubstituted 4nitroimidazole 2a does not form a diimidazole by-product upon reduction. We have suggested that the reaction occurs for 2alkyl derivatives because the alkyl substituent increases the HOMO energy thus enhancing reactivity towards electrophiles. This hypothesis is consistent with the calculated properties. Both 4-amino-2-methylimidazole 1b and 5-amino-2-methylimidazole 3b are calculated to have first ionisation potentials which are less than that calculated for 4(5)-aminoimidazole 1a.

We conclude that 5 -aminoimidazoles 3 are soft ambident nucleophiles that react with soft electrophiles. Very soft electrophiles favour reaction on carbon whereas less soft electrophiles react on the exocyclic nitrogen atom. Since nitrogen is the harder reaction centre, presumably Coulombic forces favour reaction on nitrogen if HOMO-LUMO interactions are not large enough to dominate. In contrast to the 5-aminoimidazoles 3 , we have found that for 4 -aminoimidazoles 1 the only reagent which we investigated which reacted on carbon was dimethyl acetylenedicarboxylate. This presumably reflects the nature of the alternative transition states in the 4 -amino series.

Experimental

General experimental directions are given in the preceding paper. ${ }^{1}$

Addition-Elimination Reactions of 4-Aminoimidazoles 1.-(a) With diethyl ethoxymethylenemalonate 5. ${ }^{15}$ A mixture of 2-isopropyl-4-nitroimidazole $2 \mathrm{~d}^{16}(4.65 \mathrm{~g})$, compound $5(6.6 \mathrm{~g})$ and $5 \% \mathrm{Pd} / \mathrm{C}(2.3 \mathrm{~g})$ in ethanol ($300 \mathrm{~cm}^{3}$) was vigorously shaken under an atmosphere of hydrogen until reduction was complete (ca. 1 h). After removal of the catalyst, the filtrate was evaporated to give a dark green oil (11 g) which was shaken with ethyl acetate ($100 \mathrm{~cm}^{3}$). The solid which separated was collected, washed with ethyl acetate, and recrystallised from ethyl acetate to give tetraethyl $2,2^{\prime}-\left[2^{\prime \prime}, 2^{\prime \prime \prime}\right.$-diisopropyl$5^{\prime \prime}, 5^{\prime \prime \prime}$-biimidazole- $4^{\prime \prime}, 4^{\prime \prime \prime}$-diylbis(aminomethylene) $]$ dimalonate $15 \mathrm{~d}\left(3.0 \mathrm{~g}, 34 \%\right.$), as a yellow solid, m.p. $236-238^{\circ} \mathrm{C}$ (Found: C , 57.1; H, 6.81; N, 14.1. $\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{~N}_{6} \mathrm{O}_{8}$ requires C, 57.1; H, 6.85; N, 14.3%; $v_{\text {max }} / \mathrm{cm}^{-1} 1235,1410,1640,1715,2980$ and 3305 ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.0-1.45\left[\mathrm{~m}, 4 \mathrm{OCH}_{2} \mathrm{CH}_{3}\right.$ and $\left.2 \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 2.88$ [sept, J 7, $2 \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$], 3.85-4.35(m, $\left.4 \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 8.72(\mathrm{~d}$,

Table 3 AM1 Calculated properties of some electrophilic reagents and related species

Species	LUMO energy (eV)	LUMO coefficient on reacting atom ${ }^{a}$	Total charge on reacting atom ${ }^{a}$
$\mathrm{HOCO}_{2}{ }^{-}$	8.54	0.79	$+0.40$
$(\mathrm{HO})_{2} \mathrm{CO}$	1.06	0.80	+0.40
CO	0.94	0.86	+0.20
CO_{2}	0.85	0.80	+0.41
$\mathrm{EtOCH}=\mathrm{CHCO}_{2} \mathrm{Et}$	0.18	0.67	+0.06
$\mathrm{HC} \equiv \mathrm{CCO}_{2} \mathrm{Et}$	0.14	0.57	-0.10
$\mathrm{EtOCH}=\mathrm{NCO}_{2} \mathrm{Et}$	-0.08	0.68	+0.12
$\mathrm{EtOCH}=\mathrm{NCN}$	-0.14	0.71	+0.11
PhNCO	-0.24	0.40	+0.33
$\mathrm{EtOCH}=\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}$	-0.40	0.72	+0.13
$\mathrm{EtOCH}=\mathrm{C}(\mathrm{CN}) \mathrm{CO}_{2} \mathrm{Et}$	-0.51	0.72	+0.11
2-Me-4-nitroimidazole	-0.57	$0.59{ }^{\text {b }}$	$-0.06{ }^{\text {b }}$
$(\mathrm{MeS})_{2} \mathrm{C}=\mathrm{NCN}$	-0.58	0.70	-0.22
$\mathrm{EtOCH}=\mathrm{C}(\mathrm{CN})_{2}$	-0.62	0.72	+0.09
$\mathrm{EtO}_{2} \mathrm{C} \cdot \mathrm{C} \equiv \mathrm{C} \cdot \mathrm{CO}_{2} \mathrm{Et}$	-0.85	0.42	-0.07
2-Me-5-nitroimidazole	-1.02	$0.42{ }^{\text {c }}$	$-0.04{ }^{\text {c }}$
$\mathrm{EtO}_{2} \mathrm{CN}=\mathrm{N} \cdot \mathrm{CO}_{2} \mathrm{Et}$	-1.08	0.40	-0.01
$(\mathrm{HO})_{2} \mathrm{C}=\mathrm{O}^{+} \mathrm{H}$	-6.30	0.82	+0.48

${ }^{a}$ The reacting atom is defined as that at which new bond formation occurs and is indicated in italics. ${ }^{b}$ The reacting atom is the carbon at position 5 .
${ }^{\mathrm{c}}$ The reacting atom is the carbon at position 4.
$J 14,2 \mathrm{CHNH}$), 10.70 (br d, $J 14,2 \mathrm{CHNH}$) and 10.73 (br s, 2 1-H).
The remaining filtrate and mother liquors were combined and evaporated and the residue purified by MPLC ($1: 1$, ethyl acetate- $\mathrm{Et}_{2} \mathrm{O}$ as eluent). The major fraction was collected and trituration with diethyl ether gave diethyl $2-[(2-i s o p r o p y l-$ imidazol-4-yl)aminomethylene]malonate $13 \mathrm{~d}(0.8 \mathrm{~g}, 9 \%)$ as a green solid, m.p. $123-125^{\circ} \mathrm{C}$ (Found: C, 56.9; H, 7.1; N, 14.3. $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires C, $56.9 ; \mathrm{H}, 7.2 ; \mathrm{N}, 14.2 \%$); $v_{\text {max }} / \mathrm{cm}^{-1}$ $1275,1385,1425,1610,1630,1665,2980,3230$ and $3270 ; \delta_{\mathrm{H}}$ 1.05-1.40 [m, $2 \mathrm{OCH}_{2} \mathrm{CH}_{3}$ and $\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$], 2.90 [sept. $J 7$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 4.08\left(\mathrm{q}, \mathrm{J} 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.13\left(\mathrm{q}, \mathrm{J} 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $6.84(\mathrm{~s}, 5-\mathrm{H}), 8.57(\mathrm{~d}, J 14, \mathrm{C} H \mathrm{NH}), 9.55(\mathrm{br} \mathrm{s}, 1-\mathrm{H})$ and $10.70(\mathrm{br}$ d, $J 14, \mathrm{CHN} H)$.
In a similar manner the following compounds were prepared from 2-methyl-4-nitroimidazole $\mathbf{2 b}^{16}$ and 2-ethyl-4-nitroimidazole $2 \mathbf{c}^{16}$ respectively.
Tetraethyl $\quad 2,2^{\prime}-\left[2^{\prime \prime}, 2^{\prime \prime \prime}\right.$-dimethyl- $5^{\prime \prime}, 5^{\prime \prime \prime}$-biimidazole- $4^{\prime \prime}, 4^{\prime \prime \prime}$ diylbis(aminomethylene)]dimalonate $15 \mathrm{~b}(42 \mathrm{~g}, 30 \%$) as a pale green solid, m.p. $188-190^{\circ} \mathrm{C}$ (decomp.) (Found: C, 54.1; H, 6.11 ; $\mathrm{N}, 16.0 . \mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}_{6} \mathrm{O}_{8}$ requires C, 54.1; $\mathrm{H}, 6.06 ; \mathrm{N}, 15.8 \%$); $v_{\max } / \mathrm{cm}^{-1} 1245,1300,1380,1410,1615,1640,1705,2980$ and $3260 ; \delta_{\mathrm{H}} 1.20\left(\mathrm{t}, J 7,2 \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.26\left(\mathrm{t}, J 7,2 \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $2.35\left(\mathrm{~s}, 2 \mathrm{CCH}_{3}\right), 4.00\left(\mathrm{q}, J 7,2 \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.10(\mathrm{q}, J 7,2$ $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), 8.55 (d, $J 13,2 \mathrm{C} H \mathrm{NH}$), 10.66 (br d, $J 13,2$ $\mathrm{CHNH})$ and 12.33 ($\mathrm{vbr} \mathrm{s}, 2 \mathrm{NH}$) and diethyl 2-[(2-methyl-imidazol-4-yl)aminomethylene]malonate 13b ($17.0 \mathrm{~g}, 8 \%$) as a pale green solid, m.p. $83^{\circ} \mathrm{C}$ (Found: C, 54.2; H, 6.65; N, 15.9 . $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires C, $53.92 ; \mathrm{H}, 6.41 ; \mathrm{N}, 15.7 \%$); $v_{\text {max }} / \mathrm{cm}^{-1}$ 1220, 1240, 1285, 1385, 1420, 1630, 1680, 1705, 2990, 3250 and $3320 ; \delta_{\mathrm{H}} 1.30\left(\mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right.$), $1.33\left(\mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.40$ $\left(\mathrm{s}, \mathrm{CCH}_{3}\right), 4.23\left(\mathrm{q}, \mathrm{J} 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.27\left(\mathrm{q}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, 6.57 (s, 5-H), 8.68 (d, J 13, NHCH), $9.80(\mathrm{br} \mathrm{s}, \mathrm{NH})$ and 10.90 (br d, $J 13, \mathrm{~N} H C H$).
Tetraethyl $2,2^{\prime}-\left[2^{\prime \prime}, 2^{\prime \prime \prime}-\right.$ diethyl $-5^{\prime \prime}, 5^{\prime \prime \prime}$-biimidazole $-4^{\prime \prime}, 4^{\prime \prime \prime}$ - diylbis(aminomethylene)]dimalonate $15 \mathrm{c}(4.5 \mathrm{~g}, 32 \%)$ as a green solid, m.p. 233-234 ${ }^{\circ} \mathrm{C}$ (decomp.) (Found: C, 55.7; H, 6.6; N, 15.1. $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{~N}_{6} \mathrm{O}_{8}$ requires $\mathrm{C}, 55.7 ; \mathrm{H}, 6.47 ; \mathrm{N}, 15.0 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1240,1300,1380,1410,1630,1720,2980$ and $3300 ; \delta_{\mathrm{H}}$ $1.15\left(\mathrm{t}, J 7,2 \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.23\left(\mathrm{t}, J 7,2 \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.27(\mathrm{t}, J 7,2$ $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.67\left(\mathrm{q}, \mathrm{J} 7,2 \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.02\left(\mathrm{q}, \mathrm{J} 7,2 \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, 4.12 (q, $J 7,2 \mathrm{OCH}_{2} \mathrm{CH}_{3}$), $8.68(\mathrm{~d}, J 13,2 \mathrm{CHNH}$), 10.75 (br d, J $13,2 \mathrm{CHNH}$) and 12.22 (br s, 2 NH).
Under similar conditions the 4 -nitroimidazoles $2 \mathbf{a}, \mathbf{e}, \mathbf{g}, \mathbf{i}$,
$\mathrm{j}^{16,17}$ gave the following derivatives. Diethyl 2-[(imidazol-4y l)aminomethylene]malonate 13 a ($10.1 \mathrm{~g}, 45 \%$) as a pale blue crystalline solid, m.p. $180-182^{\circ} \mathrm{C}$ (Found: C, 52.0; H, 5.91; N, 16.5. $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires $\mathrm{C}, 52.2 ; \mathrm{H}, 5.97 ; \mathrm{N}, 16.6 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1235,1270,1310,1385,1420,1620,1685,2680,2910$, 2980 and $3110 ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$-DMSO $) 1.28\left(\mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.30(\mathrm{t}$, $\left.J 7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.10\left(\mathrm{q}, \mathrm{J} 7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.20\left(\mathrm{q}, J 7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $7.00(\mathrm{~d}, J 1,5-\mathrm{H}), 7.50(\mathrm{~d}, J 1,2-\mathrm{H}), 8.68(\mathrm{~d}, J 14, \mathrm{CHNH}), 10.80$ (br d, J 14, CHNH) and 12.00 (vbr s, 1-H); diethyl 2-[(1,2-dimethylimidazol-4-yl) aminomethylene]malonate $13 \mathrm{e}(4.0 \mathrm{~g}$, 36%) as a crystalline solid, m.p. $125-126^{\circ} \mathrm{C}$ (Found: C, 55.3 ; H, $6.8 ; \mathrm{N}, 15.0 . \mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires C, $55.5 ; \mathrm{H}, 6.81 ; \mathrm{N}, 14.9 \%$); $v_{\max } / \mathrm{cm}^{-1} 1230,1255,1385,1425,1610,1670,2910,2990,3160$ and $3270 ; \delta_{\mathrm{H}} 1.30\left(\mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.35\left(\mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $2.32\left(\mathrm{~s}, \mathrm{CCH}_{3}\right), 3.51\left(\mathrm{~s}, \mathrm{NCH}_{3}\right), 4.18\left(\mathrm{q}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.30$ (q, J 7, OCH OH_{3}), $6.48(\mathrm{~s}, 5-\mathrm{H}), 8.62(\mathrm{~d}, J 14, \mathrm{CHNH})$ and 10.80 (br d, J 14, CHNH); diethyl 2-[(1-acetoxymethyl-2-methylimidazol-4-yl) aminomethylene]malonate $13 \mathrm{i}(6.9 \mathrm{~g}, 41 \%$) as a pale pink crystalline solid, m.p. 126-128 ${ }^{\circ} \mathrm{C}$ (Found: C, 52.8; $\mathrm{H}, 6.31 ; \mathrm{N}, 12.4 . \mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{6}$ requires $\mathrm{C}, 53.1 ; \mathrm{H}, 6.24 ; \mathrm{N}$, 12.4%); $v_{\text {max }} / \mathrm{cm}^{-1} 1220,1260,1365,1385,1415,1560,1610,1630$, $1665,1685,1750,2980,3130$ and $3260 ; \delta_{\mathrm{H}} 1.31\left(\mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $1.34\left(\mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.10\left(\mathrm{~s}, \mathrm{COCH}_{3}\right), 2.45\left(\mathrm{~s}, \mathrm{CCH}_{3}\right), 4.23(\mathrm{q}$, $J 7, \mathrm{CH}_{2} \mathrm{CH}_{3}$), $4.30\left(\mathrm{q}, \mathrm{J} 7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 5.70\left(\mathrm{~s}, \mathrm{NCH}_{2}\right), 6.64(\mathrm{~s}, 5-$ H), $8.60(\mathrm{~d}, J 14, \mathrm{C} H \mathrm{NH})$ and 10.8 (br d, $J 14, \mathrm{CHNH}$); diethyl-2-[(1-N,N-dimethylaminosulfonylimidazol-4-yl)aminomethylene] malonate $13 \mathrm{j}(1.2 \mathrm{~g}, 14 \%)$ as a crystalline solid, m.p. $118-$ $119^{\circ} \mathrm{C}$ (Found: C, 43.2; H, 5.6; N, 15.8; S, 8.9. $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}$ requires $\mathrm{C}, 43.3 ; \mathrm{H}, 5.6 ; \mathrm{N}, 15.6 ; \mathrm{S}, 8.9 \%$); $v_{\max } / \mathrm{cm}^{-1} 1255,1293$, 1338, 1393, 1420, 1620, 1683, 2987 and $3115 ; \delta_{\mathrm{H}} 1.34$ ($\mathrm{t}, J 7$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.4\left(\mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.91\left[\mathrm{~s}, \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right], 4.27(\mathrm{q}, J 7$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.33\left(\mathrm{q}, \mathrm{J} 7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 6.91(\mathrm{~s}, 5-\mathrm{H}), 7.75(\mathrm{~s}, 2-\mathrm{H})$, $8.68(\mathrm{~d}, J 13, \mathrm{NHCH})$ and $10.92(\mathrm{br} \mathrm{d}, J 13, \mathrm{NHCH}) ; m / z ; 360$ (M^{+}); diethyl 2-[(1-benzylimidazol-4-yl)aminomethylene]malonate 13 g (crude yield, 21 g) obtained as a brown oil which was used without further purification.
(b) With Ethoxymethylenemalononitrile $6 .{ }^{18} \mathrm{~A}$ solution of 4nitroimidazole $2 \mathbf{a}^{16}(11.3 \mathrm{~g})$ in dioxane solution was reduced in the manner previously described. ${ }^{1}$ Ethoxymethylenemalononitrile (12.2 g) in dioxane ($100 \mathrm{~cm}^{3}$) solution was added without stirring to the filtrate and after 1 h the solution was concentrated ($80 \mathrm{~cm}^{3}$). The solid which separated was collected, washed with ether and identified as the product $38 \mathrm{a}(13.1 \mathrm{~g}, 82 \%$) as a yellowbrown solid, m.p. 294-298 ${ }^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$-DMSO) 6.75 (d, $J 1$,
$5-\mathrm{H}), 7.50(\mathrm{~d}, J 1,2-\mathrm{H}), 8.18(\mathrm{~s}, \mathrm{C}=\mathrm{CH})$ and $12.0(\mathrm{vbr} \mathrm{s}, 1-\mathrm{H}$ and CHNH). Attempts to recrystallise this product resulted in cyclisation to compound 40 and the material was used without further purification.
By a similar procedure the following derivatives were prepared from the 4 -nitroimidazoles $2 k$, 2 e and $2 \mathbf{f}^{16,19}$ respectively.

4-(2,2-Dicyanovinylamino)-1-methylimidazole 38b ($4.0 \mathrm{~g}, 63 \%$) as a buff solid, m.p. $225^{\circ} \mathrm{C}$ (decomp.) (Found: C, 55.4; H, 3.9; N, 40.2. $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}_{5}$ requires $\left.\mathrm{C}, 55.5 ; \mathrm{H}, 4.07 ; \mathrm{N}, 44.4 \%\right) ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$ DMSO $+\mathrm{CDCl}_{3}$) $3.67\left(\mathrm{~s}, \mathrm{NCH}_{3}\right), 6.75(\mathrm{~d}, J 1,5-\mathrm{H}), 7.31(\mathrm{~d}, J$ 1, 2-H), 8.17 (s, HNCH) and 11.10 (vbr s, $H \mathrm{NCH}$); 4-(2,2-dicyanovinylamino)-1,2-dimethylimidazole 38c ($8.0 \mathrm{~g}, 74 \%$) as a buff solid, m.p. 205-206 ${ }^{\circ} \mathrm{C}$ (Found: C, 57.3; H, 4.98; N, 37.0. $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~N}_{5}$ requires $\left.\mathrm{C}, 57.7 ; \mathrm{H}, 4.85 ; \mathrm{N}, 37.4 \%\right) ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$ $\left.\mathrm{DMSO}+\mathrm{CDCl}_{3}\right) 2.30\left(\mathrm{~s}, \mathrm{CCH}_{3}\right), 3.53\left(\mathrm{~s}, \mathrm{NCH}_{3}\right), 6.57(\mathrm{~s}, 5-\mathrm{H})$, 8.08(s, HNCH) and 10.50 (vbr s, $H \mathrm{NCH}$); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right.$ at $-40^{\circ} \mathrm{C}$) $2.38\left(\mathrm{~s}, \mathrm{CCH}_{3}\right), 3.60\left(\mathrm{~s}, \mathrm{NCH}_{3}\right), 6.60(\mathrm{~s}, 5-\mathrm{H}), 8.17(\mathrm{~d}, \mathrm{~J}$ 14, HNCH) and 10.18 (br d, $J 14, H \mathrm{NCH}$); 4-(2,2-dicyanovinyl-amino)-2-isopropyl-1-methylimidazole $38 \mathrm{~d}(4.0 \mathrm{~g}, 66 \%)$ as pale yellow crystals, m.p. $212{ }^{\circ} \mathrm{C}$ (Found: C, 61.1; H, 6.15; N, 32.4. $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{5}$ requires C, $61.4 ; \mathrm{H}, 6.09 ; \mathrm{N}, 32.5 \%$); $\delta_{\mathrm{H}} 1.27$ [d, $J 7$, $\mathrm{HC}\left(\mathrm{CH}_{3}\right)_{3}$], $2.96\left[\right.$ sept, $J 7, \mathrm{HC}\left(\mathrm{CH}_{3}\right)_{2}$], $3.60\left(\mathrm{~s}, \mathrm{NCH}_{3}\right), 6.51$ (s, 5-H), 8.28 (br s, HNCH) and 9.08 (vbr s, $H \mathrm{NCH}$).
(c) With 3,3-dicyano-2-ethoxyprop-2-ene $7 .{ }^{20} \mathrm{~A}$ solution of 4nitroimidazole $2 \mathrm{a}^{16}(11.3 \mathrm{~g})$ in dioxane was reduced according to the method previously described. ${ }^{1}$ Compound $7(13.6 \mathrm{~g})$ was added to the filtrate and, after 1 h , the solution was concentrated ($50 \mathrm{~cm}^{3}$) and the solid product collected, recrystallised from water and identified as 4-amino-3-cyano-2-methylimidazo[$1,5-\mathrm{a}]$ pyrimidine $41(4.0 \mathrm{~g}, 23 \%)$ as needles, m.p. $323-325^{\circ} \mathrm{C}$ (decomp.) (Found: C, 55.8; H, 3.87; N, 40.5. $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}_{5}$ requires C, $55.5 ; \mathrm{H}, 4.07 ; \mathrm{N}, 40.4 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1250,1300,1390,1480$, 1545, 1615, 1670, 2220, 3105 and $3330 ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$-DMSO 2.44 $\left(\mathrm{s}, \mathrm{CCH}_{3}\right), 7.21(\mathrm{~s}, 8-\mathrm{H}), 8.49(\mathrm{~s}, 6-\mathrm{H})$ and $8.82\left(\mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right) ; m / z$ $173\left(M^{+}\right)$.
(d) With ethoxymethyleneurethane 9. ${ }^{21}$ A solution of 4nitroimidazole $2 \mathbf{a}^{16}(11.3 \mathrm{~g})$ in dioxane $\left(250 \mathrm{~cm}^{3}\right)$ was reduced. Reagent $9(14.5 \mathrm{~g})$ was added with stirring to the filtered solution and after 30 min at ambient temperature the solution was concentrated (to $c a .60 \mathrm{~cm}^{3}$). The resulting solid product was collected, washed with ether and dried. Recrystallisation from tetrahydrofuran gave ethyl $\mathrm{N}-[(1-\mathrm{H}$-imidazol-4-yl)aminomethylene] carbamate 66a ($14.2 \mathrm{~g}, 78 \%$) as needles, m.p. 179$182^{\circ} \mathrm{C}$ (Found: C, 46.8; $\mathrm{H}, 5.6 ; \mathrm{N}, 30.2 . \mathrm{C}_{7} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires C, $46.1 ; \mathrm{H}, 5.53 ; \mathrm{N}, 30.8 \%) ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$-DMSO $) 1.25$ (t, J 7, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.15\left(\mathrm{q}, J 7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 6.80(\mathrm{~d}, J 1,5-\mathrm{H}), 7.45(\mathrm{~d}, J 1$, $2-\mathrm{H}), 8.80(\mathrm{~s}, \mathrm{~N}=\mathrm{CH}), 10.40(\mathrm{br} \mathrm{s},=\mathrm{CHN} H)$ and $11.90(\mathrm{br} \mathrm{s}, 1-\mathrm{H})$.

The following compounds were similarly prepared from 1,2-dimethyl-4-nitroimidazole $2 \mathrm{e}^{16}(7.05 \mathrm{~g})$ and 1-acetoxymethyl4 -nitroimidazole $\mathbf{2 h}^{16}(9.25 \mathrm{~g})$ respectively. Ethyl [(1,2-dimethyl-1H-imidazol-4-yl)aminomethylene]carbamate 66b (6.9 g, 66\%), prisms, m.p. $162-164{ }^{\circ} \mathrm{C}$ (Found: C, 51.3; H, 6.7; N, 26.3. $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires C, $51.4 ; \mathrm{H}, 6.71 ; \mathrm{N}, 26.7 \%$); $v_{\text {max }} / \mathrm{cm}^{-1}$ $1230,1300,1465,1490,1640,1730$ and $3180 ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$-DMSO) $1.20\left(\mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.20\left(\mathrm{~s}, \mathrm{CCH}_{3}\right), 3.45\left(\mathrm{~s}, \mathrm{NCH}_{3}\right), 4.15(\mathrm{q}, J$ 7, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), $6.70(\mathrm{~s}, 5-\mathrm{H}), 8.70(\mathrm{~s}, \mathrm{~N}=\mathrm{CH})$ and 10.35 (br s, $=\mathrm{CHN} H) ; \quad m / z \quad 210\left(M^{+}\right) ;$ethyl [(1-acetoxymethyl $-1 \mathrm{H}-$ imidazol-4-yl)aminomethylene]carbamate $66 \mathrm{c}(6.6 \mathrm{~g}, 52 \%$), prisms, m.p. $131-133^{\circ} \mathrm{C}$ (Found: C, 47.2; H, 5.55; N, 22.2. $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{4}$ requires C, $47.2 ; \mathrm{H}, 5.55 ; \mathrm{N}, 22.0 \%$); $v_{\text {max }} / \mathrm{cm}^{-1}$ $1210,1270,1330,1380,1410,1670,1730,2900,3000,3060$ and $3150 ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$-DMSO) $1.20\left(\mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.05(\mathrm{~s}$, $\left.\mathrm{CH}_{2} \mathrm{O}_{2} \mathrm{CCH}_{3}\right), 4.15\left(\mathrm{q}, \mathrm{J} 7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 5.85\left(\mathrm{~s}, \mathrm{NCH}_{2} \mathrm{O}\right), 6.95(\mathrm{~d}$, $J 1,5-\mathrm{H}), 7.65(\mathrm{~d}, J 1,2-\mathrm{H}), 8.75(\mathrm{~s}, \mathrm{~N}=\mathrm{CH})$ and $10.50(\mathrm{br} \mathrm{s}$, $=\mathrm{CHN} H) ; m / z 254\left(M^{+}\right)$.
(e) With ethyl N -cyanoformimidate $10 .{ }^{21} \mathrm{~A}$ solution of 4nitroimidazole $2 \mathrm{a}^{16}(11.3 \mathrm{~g})$ in dioxane was reduced and com-
pound $10(9.8 \mathrm{~g})$ was added with stirring to the filtrate. After 15 min the solid product was collected, washed with ether and dried to give N -cyano- N^{1}-(imidazol-4-yl)formamidine 71a (9.9 g, 73%) as a green solid, m.p. $297^{\circ} \mathrm{C}$ (decomp.) (Found: C, 43.9; $\mathrm{H}, 3.6 ; \mathrm{N}, 51.4 . \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}_{5}$ requires $\mathrm{C}, 44.4 ; \mathrm{H}, 3.58 ; \mathrm{N}, 51.8 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1360,1570,1620,2180,2780$ and $3340 ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$ DMSO) 7.31 (d, J 1, 5-H), 7.56 (d, J 1, 2-H), $8.32(\mathrm{~s}, \mathrm{~N}=\mathrm{CH})$, $11.32(\mathrm{br} \mathrm{s}, \mathrm{NH})$ and $12.16(\mathrm{br} \mathrm{s}, 1-\mathrm{H}) ; m / z 135\left(M^{+}\right)$.

Similarly, the following compounds were prepared from 2 -methyl-4-nitroimidazole $2 \mathbf{b b}^{16}(12.7 \mathrm{~g})$ and 1-acetoxymethyl-2-methyl-4-nitroimidazole $2 \mathbf{i}^{22}(9.95 \mathrm{~g})$ respectively.
N-Cyano- N-(2-methylimidazol-4-yl)formamidine 71 b (4.1 g , 28%) as a light brown solid, m.p. 234-236 ${ }^{\circ} \mathrm{C}$ (decomp.); $\delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$-DMSO) $2.22\left(\mathrm{~s}, \mathrm{CCH}_{3}\right), 7.16(\mathrm{~s}, 5-\mathrm{H}), 8.25(\mathrm{~s}, \mathrm{~N}=\mathrm{CH})$, 11.20 (br s, NH) and 11.80 (br s, 1-H). Attempts to recrystallise this compound resulted in cyclisation and it was used without further purification; N -(1-acetoxymethyl-2-methylimidazol-4-yl)-N-cyanoformamidine 71c ($1.6 \mathrm{~g}, 15 \%$) as needles, m.p. 207$209{ }^{\circ} \mathrm{C}$ (Found: C, $48.8 ; \mathrm{H}, 5.01 ; \mathrm{N}, 31.8 . \mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{O}_{2}$ requires C, $48.9 ; \mathrm{H}, 5.01 ; \mathrm{N}, 31.7 \%$); $v_{\max } / \mathrm{cm}^{-1} 1235,1360,1580,1615$, 1750,2200 and $2800 ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$-DMSO $) 2.05\left(\mathrm{~s}, \mathrm{O}_{2} \mathrm{CCH}_{3}\right), 2.35$ ($\mathrm{s}, \mathrm{CCH}_{3}$), $5.90\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 7.40(\mathrm{~s}, 5-\mathrm{H}), 8.30(\mathrm{~s}, \mathrm{~N}=\mathrm{CH})$ and 11.20 (brs, NH); m/z $221\left(M^{+}\right)$.
(f) With ethyl N-cyanoacetimidate $11 .{ }^{21}$ A solution of 2-isopropyl-1-methyl-4-nitroimidazole $2 \mathbf{f}^{19}(8.45 \mathrm{~g})$ in dioxane ($125 \mathrm{~cm}^{3}$) was reduced. Compound $9(5.6 \mathrm{~g}$) was then added with stirring to the filtrate and after 1 h the solution was evaporated. The residue was subjected to MPLC $\left(9: 1, \mathrm{CHCl}_{3}-\right.$ MeOH as eluent) and the major fraction ($R_{\mathrm{f}} 0.2$) was collected and evaporated to give a buff solid. Recrystallisation from toluene gave N -cyano- N^{\prime}-(2-isopropyl-1-methylimidazol-4-yl)acetamidine 71e ($1.66 \mathrm{~g}, 16 \%$) as a colourless solid, m.p. 150 $151{ }^{\circ} \mathrm{C}$ (Found: C, 58.7; $\mathrm{H}, 7.35 ; \mathrm{N}, 33.7 . \mathrm{C}_{10} \mathrm{H}_{15} \mathrm{~N}_{5}$ requires C, 58.5; H, 7.37; N, 34.1\%); $v_{\text {max }} / \mathrm{cm}^{-1} 1560,2180,2930,2975,3120$ and 3220; $\delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$-DMSO $1.23\left[\mathrm{~d}, \mathrm{~J} 7, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 2.38$ $\left(\mathrm{s}, \mathrm{CCH}_{3}\right), 3.03\left[\mathrm{sept}, \mathrm{J} 7, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 3.62\left(\mathrm{~s}, \mathrm{NCH}_{3}\right), 7.2(\mathrm{~s}$, 5-H) and 11.08 ($\mathrm{brs}, \mathrm{NH}$); $m / z 205\left(\mathrm{M}^{+}\right)$.

Similarly, 4-nitroimidazole $2 \mathbf{a}^{16}(11.3 \mathrm{~g})$ gave N-cyano- N -(imidazol-4-yl)acetamidine 71d $\left(8.1 \mathrm{~g}, 54 \%\right.$), m.p. $197-199^{\circ} \mathrm{C}$. $\delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$-DMSO) $2.38\left(\mathrm{~s}, \mathrm{CCH}_{3}\right), 7.30(\mathrm{~d}, J, 5-\mathrm{H}), 7.53(\mathrm{~d}, J 1$, $2-\mathrm{H}$), 11.12 (br s, CNH) and 12.08 (br s, 1-H). Attempts to recrystallise this material resulted in cyclisation and it was used without further purification.
(g) With S,S'-dimethyl-N-cyanodithioiminocarbonate $12 .{ }^{23} \mathrm{~A}$ solution of 4-nitroimidazole $2 \mathrm{a}^{16}(11.3 \mathrm{~g})$ in dioxane ($270 \mathrm{~cm}^{3}$) was reduced and compound $12(14.6 \mathrm{~g})$ was added to the filtrate. After 1 h the solution was concentrated to $50 \mathrm{~cm}^{3}$ and the solid product collected. Recrystallisation from water gave 4-amino-2-methylthioimidazo[1,5-a]-1,3,5-triazine 72d ($14.7 \mathrm{~g}, 81 \%$) as colourless needles, m.p. 278-279 ${ }^{\circ} \mathrm{C}$ (Found: C, 39.8; H, 3.9; N, 39.0; S, 17.7. $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}_{5} \mathrm{~S}$ requires $\mathrm{C}, 39.8 ; \mathrm{H}, 3.89 ; \mathrm{N}, 38.7 ; \mathrm{S}$, 17.7%); $v_{\text {max }} / \mathrm{cm}^{-1} 1200,1255,1280,1355,1520,1550,1610$, 1680, 3110 and $3260 ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$-DMSO) $2.42\left(\mathrm{~s}, \mathrm{SCH}_{3}\right), 7.02$ (d, $J 1,8-\mathrm{H}), 8.26(\mathrm{~d}, J 1,6-\mathrm{H})$ and 8.51 (br s, NH_{2}).

Cyclisation of Tetraethyl $2,2^{\prime}\left[5^{\prime \prime}, 5^{\prime \prime \prime}\right.$ - Biimidazole- $4^{\prime \prime}, 4^{\prime \prime \prime}$-diylbis(aminomethylene)]dimalonates 15.-Concentrated sulfuric acid ($6.7 \mathrm{~cm}^{3}$) was added quickly (over 1 min) to a stirred suspension of compound $15 \mathrm{c}(6.7 \mathrm{~g})$ in acetic anhydride $\left(67 \mathrm{~cm}^{3}\right)$ to give an exothermic reaction (maximum temp. $95^{\circ} \mathrm{C}$). The resulting solution was cooled and poured onto water ($500 \mathrm{~cm}^{3}$) and the solid which separated was collected, recrystallised from acetic acid and identified as diethyl 4,4'-dihydroxy-6,6'-diisopropyl-bi(imidazo[3,4-a pyrimidine) 3,3'-dicarboxylate 16 c ($3.0 \mathrm{~g}, 54 \%$) as a yellow solid, m.p. $250^{\circ} \mathrm{C}$ (decomp.) (Found: C, 58.1; H, 5.8; $\mathrm{N}, 16.9 ; \mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{6} \mathrm{O}_{6}$ requires C, $58.05 ; \mathrm{H}, 5.68 ; \mathrm{N}, 16.9 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1260,1305,1370,1450,1565,1620,1675,1715,2985$ and 3335; $\delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$-DMSO $\left.+\mathrm{D}_{2} \mathrm{O}\right) 1.3\left(\mathrm{t}, \mathrm{J} 7,2 \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$,
$1.36\left[\mathrm{~d}, \mathrm{~J} \mathrm{8,2} 2 \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 3.75\left[\mathrm{sept}, J 8,2 \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 4.19$ (q, J 7, $2 \mathrm{OCH}_{2} \mathrm{CH}_{3}$) and 8.44 (s, $22-\mathrm{H}$).

Similarly, the following derivative was prepared from compound 15b. Diethyl 4,4'-dihydroxy-6,6'-dimethyl 8,8-bi(imidazo-[3,4-a $]$ pyrimidine) $-3,3^{\prime}$-dicarboxylate $16 \mathrm{~b}(3.8 \mathrm{~g}, 53 \%$) as a yellow solid, m.p. $337-338^{\circ} \mathrm{C}$ (decomp.) (Found: C, 54.3; H, 4.6; $\mathrm{N}, 19.2 . \mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{O}_{6}$ requires C, $54.5 ; \mathrm{H}, 4.58 ; \mathrm{N}, 19.1 \%$); $v_{\max } / \mathrm{cm}^{-1} 1285,1310,1370,1450,1565,1620,1700,1725,2990$, 3230 and $3320 ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]-\mathrm{DMSO}+\mathrm{D}_{2} \mathrm{O}\right) 1.29$ (t, J 7, 2 $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.88\left(\mathrm{~s}, 2 \mathrm{CH}_{3}\right), 4.22\left(\mathrm{q}, \mathrm{J} 7,2 \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$ and 8.41 (s, 2 2-H).

Cyclisation of Diethyl 2-[(1-Benzylimidazol-4-yl)aminomethylene]malonate 13 g .- A solution of a crude sample of compound $3 \mathrm{~g}(21 \mathrm{~g})$ in acetic anhydride $\left(200 \mathrm{~cm}^{3}\right)$ was treated with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(22.0 \mathrm{~g})$, the temperature of the mixture rising to $c a .70^{\circ} \mathrm{C}$. The homogeneous mixture was then poured into water ($200 \mathrm{~cm}^{3}$) and the aqueous mixture extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \times 100 \mathrm{~cm}^{3}\right)$. The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give a residue which was recrystallised from aqueous dimethylformamide and identified as the hydrogen sulfate salt of ethyl 1-benzyl-7-hydroxyimidazo-[4,5-b] pyridine-6-carboxylate $25(2.6 \mathrm{~g}, 11 \%)$, a colourless crystalline solid, m.p. $260-262^{\circ} \mathrm{C}$ (Found: C, $48.6 ; \mathrm{H}, 4.0 ; \mathrm{N}$, 10.5; S, 8.3. $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3} \cdot \mathrm{H}_{2} \mathrm{SO}_{4}$ requires $\mathrm{C}, 48.6 ; \mathrm{H}, 4.3 ; \mathrm{N}$, $10.6 ; \mathrm{S}, 8.1 \%) ; v_{\max } / \mathrm{cm}^{-1} 1240,1255,1295,1350,1585,1750$, $3100,3180,3520$ and $3620 ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]-\mathrm{DMSO}+\mathrm{D}_{2} \mathrm{O}\right) 1.28(\mathrm{t}, J$ $7, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), $4.28\left(\mathrm{q}, \mathrm{J} 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 5.77\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 7.33-$ $7.60\left(\mathrm{~m}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 8.40(\mathrm{~s}, 5-\mathrm{H})$ and $9.94(\mathrm{~s}, 2-\mathrm{H})$.

The aqueous phase was basified to pH 4 and the solid which separated was collected, recrystallised from ethanol and identified as 7-benzyl-3-ethoxycarbonylimidazo[3,4-a]pyrimidin-7-ium-4-olate $26(5.2 \mathrm{~g}, 29 \%)$, a crystalline solid, m.p. $239^{\circ} \mathrm{C}$ (Found: C, 64.3; H, 5.0; N, 14.2. $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires $\mathrm{C}, 64.6$; $\mathrm{H}, 5.09 ; \mathrm{N}, 14.1 \%$); $v_{\max } / \mathrm{cm}^{-1} 1275,1340,1425,1545,1635,1730$, 2985,3080 and $3125 ; \delta_{\mathrm{H}} 1.25\left(\mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.20(\mathrm{q}, J 7$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 5.55\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 7.38-7.55\left(\mathrm{~m}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.73(\mathrm{~d}, J 1$, $8-\mathrm{H}), 8.46(\mathrm{~s}, 2-\mathrm{H})$ and $9.55(\mathrm{~d}, J 1,6-\mathrm{H})$.

Cycloaddition Reactions of 7-Benzyl-3-ethoxycarbonylimi-dazo[3,4-a] pyrimidin-7-ium-4-olate 26.-A mixture of compound $26(1.5 \mathrm{~g})$ and dimethyl acetylenedicarboxylate $\left(0.6 \mathrm{~cm}^{3}\right)$ in toluene $\left(20 \mathrm{~cm}^{3}\right)$ was heated and stirred at $100^{\circ} \mathrm{C}(22 \mathrm{~h})$. The mixture was then filtered and evaporated to give a brown oil which was purified by MPLC (99:1, $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ as eluent). The first major component ($R_{\mathrm{f}} 0.5$) was collected, recrystallised from ethyl acetate and identified as ethyl 2-(1-benzyl-3,4-dimethoxycarbonylpyrrol-2-yl)-4-oxo-3,4-dihydropyrimidine-5carboxylate $29(0.7 \mathrm{~g}, 32 \%)$, colourless crystals, m.p. $140-141^{\circ} \mathrm{C}$ (Found: C, 60.1; H, 5.0; N, 9.4. $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{7}$ requires $\mathrm{C}, 60.1 ; \mathrm{H}$, $4.82 ; \mathrm{N}, 9.6 \%$; $v_{\text {max }} / \mathrm{cm}^{-1} 1220,1300,1315,1340,1370,1455$, $1520,1560,1600,1685,1730,2950$ and $3130 ; \delta_{\mathrm{H}} 1.28(\mathrm{t}, J 7$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.70\left(\mathrm{~s}, \mathrm{OCH}_{3}\right), 3.74\left(\mathrm{~s}, \mathrm{OCH}_{3}\right), 4.25(\mathrm{q}, J 7$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 5.55\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 6.95-7.35\left(\mathrm{~m}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.87(\mathrm{~s}$, pyrrole $2-\mathrm{H}), 8.64(\mathrm{~s}$, pyrimidine $6-\mathrm{H})$ and $13.00(\mathrm{vbr} \mathrm{s}, \mathrm{OH})$.

The second major fraction $\left(R_{f} 0.3\right)$ was collected, recrystallised from ethyl acetate and identified as 1-benzyl-4-(2,3-dimethoxycarbonyl-5-ethoxycarbonyl-4-oxo-1,4-dihydro-1pyridyl) imidazole $30(0.45 \mathrm{~g}, 21 \%)$, off-white solid, m.p. $73^{\circ} \mathrm{C}$ (Found: C, 60.0; H, 4.65; N, 9.3. $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{7}$ requires C, 60.1; $\mathrm{H}, 4.82 ; \mathrm{N}, 9.6 \%$; $v_{\max } / \mathrm{cm}^{-1} 1280,1435,1560,1630,1705,1740$, 2960,3120 and $3450 \mathrm{br} ; \delta_{\mathrm{H}} 1.26\left(\mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.58(\mathrm{~s}$, $\left.\mathrm{OCH}_{3}\right), 3.75\left(\mathrm{~s}, \mathrm{OCH}_{3}\right), 4.22\left(\mathrm{q}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 5.28(\mathrm{~s}$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 7.25-7.44\left(\mathrm{~m}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.65(\mathrm{~d}, J$ 1, imidazole $5-\mathrm{H}), 7.86$ (d, $J 1$, imidazole $2-\mathrm{H}$) and $8.35(\mathrm{~s}$, pyridine $6-\mathrm{H})$.

4-Amino-3-cyanoimidazo[1,5-a] pyrimidine 40.-Compound $38 \mathrm{a}(13.1 \mathrm{~g})$ was added with stirring to a suspension of charcoal
$(5.0 \mathrm{~g})$ in boiling water ($750 \mathrm{~cm}^{3}$). Heating was continued (5 $\mathrm{min})$ and the hot suspension was then filtered. The filtrate was concentrated to $150 \mathrm{~cm}^{3}$ and the solid product which separated was collected, washed with cold ethanol and identified as the title compound $40(5.1 \mathrm{~g}, 39 \%)$, colourless needles, m.p. $325^{\circ} \mathrm{C}$ (decomp.) (Found: $\mathrm{C}, 52.4 ; \mathrm{H}, 3.03 ; \mathrm{N}, 43.5 . \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~N}_{5}$ requires C , $52.8 ; \mathrm{H}, 3.17 ; \mathrm{N}, 44.0 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1570,1600,1685,2210,3000$ and $3140 ; \delta_{\mathrm{H}} 7.36(\mathrm{~d}, J 1,8-\mathrm{H}), 8.07(\mathrm{~s}, 2-\mathrm{H}), 8.56(\mathrm{~d}, J 1,6-\mathrm{H})$ and $8.97\left(\mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right) ; m / z 159\left(M^{+}\right)$.

Imidazo[1,5-a]-1,3,5-triazin-4-one 68a.-A mixture of compound $66 \mathrm{a}(6.37 \mathrm{~g})$ and potassium carbonate $(4.83 \mathrm{~g})$ in ethanol ($300 \mathrm{~cm}^{3}$) was heated under reflux (2 h). Charcoal was added and the hot solution filtered, cooled and concentrated to 60 cm^{3}. The solid product was collected, washed with ether and identified as potassium imidazo[1,5-a]-1,3,5-triazin-4-olate 67 ($4.6 \mathrm{~g}, 75 \%$), an off-white solid, m.p. $>360^{\circ} \mathrm{C}$ (Found: C, 34.1; $\mathrm{H}, 1.6 ; \mathrm{K}, 22.6 ; \mathrm{N}, 31.9 . \mathrm{C}_{5} \mathrm{H}_{3} \mathrm{KN}_{4} \mathrm{O}$ requires $\mathrm{C}, 34.5 ; \mathrm{H}, 1.74$; $\mathrm{K}, 22.4 ; \mathrm{N}, 32.2 \%$); $v_{\max } / \mathrm{cm}^{-1} 1210,1250,1310,1360,1390,1510$, 1560,1640 and $3140 ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$-DMSO) $6.75(\mathrm{~d}, J 1,8-\mathrm{H}), 7.52$ (s, 2-H) and 7.78 (d, J 1, 6-H).

A solution of compound $67(2.5 \mathrm{~g})$ in water $\left(80 \mathrm{~cm}^{3}\right)$ was acidified to $\mathrm{pH} 5(\mathrm{AcOH})$ and the resulting suspension heated under reflux (5 min), filtered and allowed to stand at $0^{\circ} \mathrm{C}(1 \mathrm{~h})$. The solid product was then collected, washed with EtOH $\left(2 \times 15 \mathrm{~cm}^{3}\right)$ and ether $\left(3 \times 15 \mathrm{~cm}^{3}\right)$ and identified as the title compound 68a ($1.3 \mathrm{~g}, 66 \%$), colourless prisms, m.p. $270^{\circ} \mathrm{C}$ (decomp.) (Found: C, 43.7; H, 2.7; N, 41.0. $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}_{4} \mathrm{O}$ requires C, 44.1; H, 2.96; N, 41.2\%); $\lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 255$ ($\varepsilon 7650$); $v_{\max } / \mathrm{cm}^{-1} 1230,1280,1330,1360,1455,1580,1610,1740$ and $3100 ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]-\mathrm{DMSO}\right) 7.25(\mathrm{~d}, J 1,8-\mathrm{H}), 7.76(\mathrm{~s}, 2-\mathrm{H}), 8.34(\mathrm{~d}$, $J 1,6-\mathrm{H})$ and $12.4(\mathrm{br} \mathrm{s}, 3-\mathrm{H}) ; m / z 136\left(M^{+}\right)$.

Alkylation of Potassium Imidazo[1,5-a]-1,3,5-triazin-4-olate 67.-Compound $67(1.74 \mathrm{~g})$ was stirred with a solution of methyl iodide (1.5 g) in DMF ($50 \mathrm{~cm}^{3}$). The mixture was warmed and when homogeneous (3 min) was evaporated. The residue was dissolved in water ($50 \mathrm{~cm}^{3}$) and extracted with chloroform $\left(3 \times 50 \mathrm{~cm}^{3}\right)$. The combined extracts were dried (MgSO_{4}), concentrated ($c a .40 \mathrm{~cm}^{3}$) and diluted with ether. The product which crystallised was identified as 3-methylimidazo[1,5-a]-1,3,5-triazin-4-one $68 \mathrm{~b}(1.0 \mathrm{~g}, 67 \%$), colourless crystals, m.p. $171-173{ }^{\circ} \mathrm{C}$ (Found: C, 47.5; H, 3.95; $\mathrm{N}, 37.3 . \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{O}$ requires $\mathrm{C}, 48.0 ; \mathrm{H}, 4.03 ; \mathrm{N}, 37.3 \%$); $\lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} \quad 258$ ($\varepsilon 9310$); $v_{\text {max }} / \mathrm{cm}^{-1} 1275,1340,1430$, $1455,1610,1720,3070,3105$ and $3120 ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$-DMSO 3.45 $\left(\mathrm{s}, \mathrm{NCH}_{3}\right), 7.22(\mathrm{~d}, J 1,8-\mathrm{H}), 7.95(\mathrm{~s}, 2-\mathrm{H})$ and $8.35(\mathrm{~d}, J 1,6-$ $\mathrm{H}) ; m / z 150\left(M^{+}\right)$.

Similarly the following derivatives were prepared with ethyl iodide, benzyl bromide or 3,3-dimethylallyl bromide. 3-Ethyl-imidazo[1,5-a]-1,3,5-triazin-4-one 68c (1.32 g, 81\%), small lustrous plates, m.p. $156-159^{\circ} \mathrm{C}$ (Found: C, $50.8 ; \mathrm{H}, 4.75 ; \mathrm{N}$, 34.2. $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O}$ requires $\mathrm{C}, 51.2 ; \mathrm{H}, 4.91 ; \mathrm{N}, 34.1 \%$); $v_{\text {max }} / \mathrm{cm}^{-1}$ $1245,1270,1360,1380,1470,1610,1725$ and $3080 ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$ DMSO) $1.3\left(\mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.93\left(\mathrm{q}, J 7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 7.25(\mathrm{~d}$, $J 1,8-\mathrm{H}), 8.00(\mathrm{~s}, 2-\mathrm{H})$ and $8.35(\mathrm{~d}, J 1,6-\mathrm{H}) ; \mathrm{m} / \mathrm{z} 164\left(M^{+}\right)$; 3-benzylimidazo[1,5-a]-1,3,5-triazin-4-one 68d (1.34 g, 58%), colourless needles, m.p. $142-143{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 63.3 ; \mathrm{H}, 4.4 ; \mathrm{N}$, 24.9. $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}$ requires $\mathrm{C}, 63.7 ; \mathrm{H}, 4.46 ; \mathrm{N}, 24.8 \%$); $v_{\text {max }} / \mathrm{cm}^{-1}$ $1265,1355,1370,1450,1600$ and $1740 ; \delta_{\mathrm{H}} 5.15\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 7.30(\mathrm{~d}$, $J 1,8-\mathrm{H}), 7.32-7.45\left(\mathrm{~m}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 8.16(\mathrm{~s}, 2-\mathrm{H})$ and $8.38(\mathrm{~d}, J 1$, 6-H); m/z 226 (M^{+}); 3-(3-methylbut-3-enyl)imidazo[1,5-a]-1,3,5-triazin-4-one $68 \mathrm{e}(0.35 \mathrm{~g}, 34 \%$), lustrous plates, m.p. $92-$ $94{ }^{\circ} \mathrm{C}$ (Found: C, $58.7 ; \mathrm{H}, 5.9 ; \mathrm{N}, 27.5 . \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}$ requires C , $58.8 ; \mathrm{H}, 5.92 ; \mathrm{N}, 27.4 \%$; $v_{\max } / \mathrm{cm}^{-1} 1250,1270,1360,1370,1460$, 1610,1730 and $3090 ; \delta_{\mathrm{H}} 1.72\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 1.79\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 4.52(\mathrm{~d}, J 7$, CH_{2}), $5.32\left(\mathrm{t}, \mathrm{t}, J 7\right.$ and $\left.1, H \mathrm{CCH}_{2}\right), 7.26(\mathrm{~d}, J 1,8-\mathrm{H}), 7.94(\mathrm{~s}$, 2-H) and $8.35(\mathrm{~d}, J 1,6-\mathrm{H}) ; m / z 204\left(M^{+}\right)$.

Preparation of 4-Aminoimidazo[1,5-a]-1,3,5-triazines 72.Compound 71a (26.4 g) was added to a suspension of activated charcoal (10 g) in boiling water $\left(4 \mathrm{dm}^{3}\right)$. The hot solution was filtered and concentrated ($\mathrm{ca} .500 \mathrm{~cm}^{3}$). The solid which separated was collected, washed with cold ethanol ($2 \times 20 \mathrm{~cm}^{3}$) and then ether ($3 \times 25 \mathrm{~cm}^{3}$); it was identified as 4 -aminoimidazo $[1,5-\mathrm{a}]-1,3,5-$ triazine $72 \mathrm{a}(13 \mathrm{~g}, 49 \%$), colourless crystals, m.p. $300^{\circ} \mathrm{C}$ (decomp.) (Found: C, 44.3; H, 3.55; N, 51.6. $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}_{5}$ requires C, 44.4; $\mathrm{H}, 3.73 ; \mathrm{N}, 51.8 \%$); $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm}$ 215, 268 and 308 ($\varepsilon 15370,7140$ and 4230); $v_{\text {max }} / \mathrm{cm}^{-1} 1300$, $1355,1375,1465,1540,1610,1690,3030$ and $3120 ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$ DMSO) $7.26(\mathrm{~d}, J 1,8-\mathrm{H}), 7.88(\mathrm{~s}, 2-\mathrm{H}), 8.42(\mathrm{~d}, J 1,6-\mathrm{H})$ and 8.56 (br s, NH_{2}); $m / z 135\left(M^{+}\right)$.

Similarly, the following derivatives were also prepared from compounds 71d and 71b respectively. 4-Amino-2-methyl-imidazo[1,5-a]-1,3,5-triazine 72b ($6.2 \mathrm{~g}, 76 \%$), colourless crystals, m.p. $278-279^{\circ} \mathrm{C}$ (Found: C, 48.1 ; H, 4.65; N, 47.2. $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}_{5}$ requires C, 48.3; $\mathrm{H}, 4.73 ; \mathrm{N}, 47.0 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1220$, 1270, 1295, 1395, 1470, 1550, 1615 and $1690 ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$-DMSO $)$ $2.30\left(\mathrm{~s}, \mathrm{CCH}_{3}\right), 7.00(\mathrm{~s}, 8-\mathrm{H}), 8.30(\mathrm{~s}, 6-\mathrm{H})$ and $8.40\left(\mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right) ;$ $m / z 149\left(M^{+}\right)$; 4-amino-6-methylimidazo $[1,5-\mathrm{a}]-1,3,5$-triazine $72 \mathrm{c}(1.15 \mathrm{~g}, 8 \%)$, an off-white solid, m.p. $245-247^{\circ} \mathrm{C}$ (Found: C, 48.0; H, 4.6; N, 47.1. $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}_{5}$ requires $\mathrm{C}, 48.3 ; \mathrm{H}, 4.73$; N , 47.0%; ; $v_{\text {max }} / \mathrm{cm}^{-1} 1210,1285,1370,1530,1600,1655,3020$ and $3430 ; \delta_{\mathrm{H}} 2.84\left(\mathrm{~s}, \mathrm{CCH}_{3}\right), 6.94(\mathrm{~s}, 8-\mathrm{H}), 7.63(\mathrm{~s}, 2-\mathrm{H})$ and $7.75(\mathrm{br} \mathrm{s}$, $\left.\mathrm{NH}_{2}\right) ; m / z 149\left(M^{+}\right)$.

Reactions of 4-Aminoimidazo[1,5-a]-1,3,5-triazines 72.-(a) With aryl isocyanates. To a stirred solution of compound 72a (2.7 g) in a mixture of $1 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous $\mathrm{NaOH}\left(22.5 \mathrm{~cm}^{3}\right.$) and acetone $\left(30 \mathrm{~cm}^{3}\right)$ was added a solution of phenyl isocyanate (2.62 g) in acetone ($10 \mathrm{~cm}^{3}$), the temperature being maintained below $10^{\circ} \mathrm{C}$ during the addition. After being stirred at room temperature (30 min), the mixture was acidified (glacial AcOH, $2 \mathrm{~cm}^{3}$). The solid product was collected, recrystallised from ethoxyethanol and identified as N -(imidazo $[1,5-\mathrm{a}]-1,3,5-$ triazin-$4-y l)-\mathrm{N}^{\prime}$-phenylurea $74(\mathrm{R}=\mathrm{Ph})(1.3 \mathrm{~g}, 26 \%)$, fine needles, m.p. $239{ }^{\circ} \mathrm{C}$ (decomp.) (Found: C, 56.3; H, 3.79; N, 33.2. $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{6} \mathrm{O}$ requires $\mathrm{C}, 56.7 ; \mathrm{H}, 3.96 ; \mathrm{N}, 33.1 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1205,1240,1320$, $1370,1395,1440,1530,1595,1640,1670,3060$ and 3150 ; $\delta_{\mathrm{H}}\left({ }^{2}{ }^{2} \mathrm{H}_{6}\right]$-DMSO) $7.00-7.08(\mathrm{~m}, 1 \mathrm{PhH}), 7.26-7.36(\mathrm{~m}, 2 \mathrm{PhH}$ and 8-H), 7.64-7.74 (m, 2 PhH), 7.77 (s, 2-H), 8.32 (s, 6-H), 10.08 (br s, NH) and 12.47 (br s, NH); $m / z 254\left(M^{+}\right)$.

Similarly the following compound was prepared. N-(Imidazo-[1,5-a]-1,3,5-triazin-4-yl)- N^{\prime}-3,4-dichlorophenylurea 74 ($\mathrm{R}=$ $\left.3,4-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)(0.75 \mathrm{~g}, 12 \%)$, colourless crystals, m.p. $250^{\circ} \mathrm{C}$ (decomp.) (Found: C, 44.4; H, 2.4; Cl, 21.7; N, 25.7. $\mathrm{C}_{12} \mathrm{H}_{8}{ }^{-}$ $\mathrm{Cl}_{2} \mathrm{~N}_{6} \mathrm{O}$ requires C, $44.6 ; \mathrm{H}, 2.50 ; \mathrm{Cl}, 21.9 ; \mathrm{N}, 26.0 \%$); $v_{\text {max }} / \mathrm{cm}^{-1}$ $1210,1240,1300,1320,1385,1480,1530,1590,1665$ and 3100 ; $\delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]-\mathrm{DMSO}\right) 7.32(\mathrm{~s}, 8-\mathrm{H}), 7.57(\mathrm{br} \mathrm{s}, 2 \mathrm{ArH}), 7.75(\mathrm{~s}, 2-\mathrm{H})$, $8.10(\mathrm{br} \mathrm{s}, 1 \mathrm{ArH}), 8.29(\mathrm{~s}, 6-\mathrm{H}), 10.42(\mathrm{br} \mathrm{s}, \mathrm{NH})$ and 12.56 (br s, NH); $m / z 323\left(M^{+}\right)$.
(b) With benzoic anhydride. Benzoic anhydride (67.8 g) was heated to $180^{\circ} \mathrm{C}$ and compound 72a (4.05 g) was added with stirring. The mixture became homogeneous followed by separation of a yellow-green solid. After cooling, toluene (100 cm^{3}) was added with stirring and the solid product collected. Recrystallisation from ethoxyethanol gave 4-benzamidoimidazo-[1,5-a]-1,3,5-triazine 76a ($6.6 \mathrm{~g}, 92 \%$) as a buff solid, m.p. $294{ }^{\circ} \mathrm{C}$ (decomp.) (Found: C, 60.5; H, 3.65; N, 29.3. $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}$ requires C, 60.2; H, 3.79; N, 29.3\%); $v_{\text {max }} / \mathrm{cm}^{-1} 1200,1270,1305,1315$, 1330, 1370, 1390, 1425, 1450, 1605, 1675 and 3060; $\delta_{\mathrm{H}} 7.33$ (d, $J 1,8-\mathrm{H}), 7.45-7.65(\mathrm{~m}, 3 \mathrm{PhH}), 7.82(\mathrm{~s}, 2-\mathrm{H}), 8.23-8.40(\mathrm{~m}, 2$ $\mathrm{PhH}), 8.60(\mathrm{~d}, J 1,6-\mathrm{H})$ and $12.40(\mathrm{br} \mathrm{s}, \mathrm{NH}) ; m / z 239\left(M^{+}\right)$.
(c) With acetic anhydride. Compound 72a (3.38 g) was added to boiling acetic anhydride ($30 \mathrm{~cm}^{3}$) and reflux was maintained (10 min). After cooling, the solid product which separated was collected, recrystallised from ethoxyethanol and identified as 4-
acetamidoimidazo $[1,5-\mathrm{a}]-1,3,5$-triazine 73 a ($1.4 \mathrm{~g}, 32 \%$), cream crystals, m.p. $224^{\circ} \mathrm{C}$ (Found: C, 47.3; $\mathrm{H}, 3.85 ; \mathrm{N}, 39.7 . \mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{5} \mathrm{O}$ requires $\mathrm{C}, 47.4 ; \mathrm{H}, 3.98 ; \mathrm{N}, 39.5 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1240,1285,1360$, $1390,1415,1600,1675$ and $3060 ; \delta_{\mathrm{H}} 2.38\left(\mathrm{~s}, \mathrm{COCH}_{3}\right), 7.43$ (s, 8$\mathrm{H}), 8.00(\mathrm{~s}, 2-\mathrm{H}), 8.51(\mathrm{~s}, 6-\mathrm{H})$ and 11.87 (br s, NH); $m / z 177\left(\mathrm{M}^{+}\right)$.

Similarly, the following compounds were prepared. 4-Acet-amido-6-methylimidazo $[1,5-\mathrm{a}]-1,3,5$-triazine $73 \mathrm{c}(0.67 \mathrm{~g}, 23 \%$), pale yellow needles, m.p. $196-197^{\circ} \mathrm{C}$ (Found: C, 50.2; H, 4.7; N, 36.9. $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}$ requires $\mathrm{C}, 50.3 ; \mathrm{H}, 4.75 ; \mathrm{N}, 36.6 \%$); $v_{\text {max }} / \mathrm{cm}^{-1}$ 1225, 1310, 1370, 1600 and $3150 ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$-DMSO) 2.24 (s, $\left.\mathrm{COCH}_{3}\right), 2.84\left(\mathrm{~s}, \mathrm{CCH}_{3}\right), 7.10(\mathrm{~s}, 8-\mathrm{H}), 7.63(\mathrm{~s}, 2-\mathrm{H})$ and 12.21 (br s, NH); m/z $191\left(M^{+}\right)$; 4-acetamido-2-methylimidazo $[1,5-\mathrm{a}]-$ 1,3,5-triazine 73b ($0.9 \mathrm{~g}, 35 \%$), colourless solid, m.p. $134-136^{\circ} \mathrm{C}$ (Found: C, 49.9; $\mathrm{H}, 4.8 ; \mathrm{N}, 36.9 . \mathrm{C}_{8} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}$ requires $\mathrm{C}, 50.2 ; \mathrm{H}$, $4.75 ; \mathrm{N}, 36.6 \%$); $v_{\max } / \mathrm{cm}^{-1} 1220,1260,1275,1370,1385,1610$, 1670, 3120 and $3160 ; \delta_{\mathrm{H}} 2.40\left(\mathrm{~s}, \mathrm{CCH}_{3}\right.$ or $\left.\mathrm{COCH}_{3}\right), 2.45$ (s, COCH_{3} or CCH_{3}), $7.25(\mathrm{~d}, J 1,8-\mathrm{H}), 8.40(\mathrm{~d}, J 1,6-\mathrm{H})$ and 11.50 (br s, NH); $m / z 191$ (M^{+}).
(d) With benzoyl chloride and dimethylformamide. Benzoyl chloride (11.25 g) was added to a stirred solution of compound 72a (5.4 g) and potassium carbonate (11.05 g) in dimethylformamide ($250 \mathrm{~cm}^{3}$). The orange solution was stirred at ambient temperature (30 min), filtered and evaporated. The residue was extracted with chloroform ($3 \times 50 \mathrm{~cm}^{3}$) and the extract purified by MPLC ($9: 1, \mathrm{CHCl}_{3}-\mathrm{MeOH}$ as eluent). The major fraction ($R_{\mathrm{f}} 0.35$) was collected and identified as N, N -dimethyl- N^{\prime}-(imidazo[1,5-a]-1,3,5-triazin-4-yl)formamidine 75 $(\mathrm{R}=\mathrm{H})(1.8 \mathrm{~g}, 24 \%)$, yellow crystals, m.p. $167-168^{\circ} \mathrm{C}$ (Found: C, 50.2; $\mathrm{H}, 5.2 ; \mathrm{N}, 44.1 . \mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{6}$ requires $\mathrm{C}, 50.5 ; \mathrm{H}, 5.30 ; \mathrm{N}$, 44.2%; $v_{\text {max }} / \mathrm{cm}^{-1} 1270,1300,1410,1490,1580,1630,3110$ and $3300 ; \delta_{\mathrm{H}} 3.31\left[\mathrm{~s}, \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right], 7.40(\mathrm{~d}, J 1,8-\mathrm{H}), 8.00(\mathrm{~s}, 2-\mathrm{H}), 8.28$ (d, $J 1,6-\mathrm{H}$) and $8.93(\mathrm{~s}, \mathrm{~N}=\mathrm{CH}) ; m / z 190\left(M^{+}\right)$.
(e) With diethyl ethoxymethylenemalonate 5. Compound 72a (10.13 g) was added with stirring to boiling diethyl ethoxymethylenemalonate $\left(100 \mathrm{~cm}^{3}\right)$. When the solution was clear (10 min) the mixture was allowed to cool and the solid which separated was collected, recrystallised from ethoxyethanol and identified as ethyl 4 -oxo- 4 H -imidazo $[3,4-\mathrm{c}]$ pyrimido [1,2-a]-1,3,5-triazine-3-carboxylate 77 ($10.7 \mathrm{~g}, 55 \%$), buff plates, m.p. 244-246 ${ }^{\circ} \mathrm{C}$ (Found: C, 50.8; H, 3.35; N, 27.0. $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}_{3}$ requires $\mathrm{C}, 51.0 ; \mathrm{H}, 3.50 ; \mathrm{N}, 27.0 \%$); $\lambda_{\text {max }}{ }^{-}$ (EtOH)/nm 209, 270 and 326 ($\varepsilon 10360,13680$ and 9210); $v_{\text {max }} / \mathrm{cm}^{-1} 1220,1280,1445,1460,1520,1605,1695,1745,3080$ and $3120 ; \delta_{\mathrm{H}} 1.32\left(\mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.32\left(\mathrm{q}, J 7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 7.68$ (d, $J 1,8-\mathrm{H}), 8.72(\mathrm{~s}, 6-\mathrm{H})$ and $8.86(\mathrm{~d}, J 1,10-\mathrm{H}) ; m / z 259\left(M^{+}\right)$.
(f) With primary amines. A mixture of compound $72 \mathrm{~d}(7.24 \mathrm{~g})$, furfurylamine (11.6 g) and ethoxyethanol ($130 \mathrm{~cm}^{3}$) was heated under reflux (40 h). Charcoal was added and the solution was filtered, evaporated and the residue purified by MPLC ($9: 1$, $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ as eluent). The major fraction ($R_{\mathrm{f}} 0.41$) was collected, concentrated and the product which crystallised with time (12 h at $0^{\circ} \mathrm{C}$) was collected, washed with ether $(2 \times 15$ cm^{3}) and identified as 4-furfurylamino-2-methylthioimidazo-[1,5-a]-1,3,5-triazine 78a ($4.1 \mathrm{~g}, 39 \%$), pale pink crystals, m.p. $161-163{ }^{\circ} \mathrm{C}$ (Found: C, 50.5; H, 4.2; N, 27.0; S, 11.9. $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{~S}$ requires $\mathrm{C}, 50.6 ; \mathrm{H}, 4.24 ; \mathrm{N}, 26.8 ; \mathrm{S}, 12.3 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1250,1295,1350,1490,1590,1620,3130$ and $3240 ; \delta_{\mathrm{H}}$ $2.56\left(\mathrm{~s}, \mathrm{SCH}_{3}\right), 4.84\left(\mathrm{~d}, J 6, \mathrm{NCH}_{2}\right), 6.32-6.41(\mathrm{~m}, 3,4-$ furyl-H), 7.11 (s, 8-H), 7.38 (br s, 5-furyl-H), 7.88 (br, t, J 6, NH) and 8.11 ($\mathrm{s}, 6-\mathrm{H}$); $m / z 261$ (M^{+}).

Similarly the following compounds were also prepared. 2-Methylthio-4-isopropylaminoimidazo [1,5-a]-1,3,5-triazine 78b
 5.7; $\mathrm{N}, 31.1 . \mathrm{C}_{9} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{~S}$ requires $\mathrm{C}, 48.4 ; \mathrm{H}, 5.87 ; \mathrm{N}, 31.4 \%$), $v_{\text {max }} / \mathrm{cm}^{-1} 1245,1350,1365,1485,1575,1610,2980,3120$ and $3200 ; \delta_{\mathrm{H}} 1.28\left[\mathrm{~d}, J 8, \mathrm{HC}\left(\mathrm{CH}_{3}\right)_{2}\right], 2.55\left(\mathrm{~s}, \mathrm{SCH}_{3}\right), 4.53$ [d, sept, $J 8$ and $\left.8, H C\left(\mathrm{CH}_{3}\right)_{2}\right], 7.14(\mathrm{~d}, J 1,8-\mathrm{H}), 7.21$ (br d, $\left.J 8, \mathrm{NH}\right)$ and $8.18(\mathrm{~d}, J 1,6-\mathrm{H}) ; m / z 223\left(M^{+}\right) ; 4$-butylamino-2-
methylthioimidazo $[1,5-\mathrm{a}]-1,3,5-$ triazine $78 \mathrm{c}(1.4 \mathrm{~g}, 30 \%$), colourless crystals, m.p. $205-207^{\circ} \mathrm{C}$ (Found: C, 50.3; H, 6.40; N, 29.3; $\mathrm{S}, 13.3 . \mathrm{C}_{10} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{~S}$ requires $\mathrm{C}, 50.6 ; \mathrm{H}, 6.37$; $\mathrm{N}, 29.5 ; \mathrm{S}, 13.5 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1250,1290,1360,1430,1500,1605,1630,2970,3120$ and $3260 ; \delta_{\mathrm{H}} 0.94\left(\mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.42\left(\mathrm{~m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.69(\mathrm{~m}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $2.55\left(\mathrm{~s}, \mathrm{SCH}_{3}\right), 3.66\left(\mathrm{q}, J 6, \mathrm{HNCH}_{2} \mathrm{CH}_{2}\right), 7.10$ (d, $J 1,8-\mathrm{H}$), $8.35(\mathrm{~d}, J 1,6-\mathrm{H}$) and 8.70 (br t, $J 6, \mathrm{NH}$); $m / z 237$ (M^{+}); 4-hexadecylamino-2-methylthioimidazo $[1,5-\mathrm{a}]-1,3,5$-triazine $78 \mathrm{~d}\left(1.5 \mathrm{~g}, 25 \%\right.$), colourless plates, m.p. $102-103{ }^{\circ} \mathrm{C}$ (Found: C, 65.1; H, 10.0; N, 17.2; S, 7.7. $\mathrm{C}_{22} \mathrm{H}_{39} \mathrm{~N}_{5} \mathrm{~S}$ requires C, 65.1; H, 9.69; N, 17.3; S, 7.9\%); $v_{\text {max }} / \mathrm{cm}^{-1} 1250,1360,1370$, $1490,1590,1620,2860$ and $2920 ; \delta_{\mathrm{H}} 0.88\left(\mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.30$ (m, 24 aliphatic H), 1.76 (m, $\mathrm{HNCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.86 (m, $\left.\mathrm{HNCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.56\left(\mathrm{~s}, \mathrm{SCH}_{3}\right), 3.66\left(\mathrm{q}, \mathrm{J} 7, \mathrm{HNCH}_{2} \mathrm{CH}_{2}\right)$, 7.13 (s, 8-H), 7.56 (br t, $J 7, \mathrm{NH}$) and 8.19 (s, 6-H); m/z 405 (M^{+}); 4-benzylamino-2-methylthioimidazo[1,5-a]-1,3,5-triazine $78 \mathrm{e}\left(0.95 \mathrm{~g}, 18 \%\right.$), colourless solid, m.p. $189-190^{\circ} \mathrm{C}$ (Found: C, 57.7; H, 4.9; N, 25.9; S, 11.6. $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{~S}$ requires $\mathrm{C}, 57.5 ; \mathrm{H}$, 4.83; N, 25.8; S, 11.8\%); $v_{\text {max }} / \mathrm{cm}^{-1} 1250,1355,1495,1620,3040$, 3130 and 3240; $\delta_{\mathrm{H}} 2.54\left(\mathrm{~s}, \mathrm{SCH}_{3}\right), 4.82$ (d, $\left.J 6, \mathrm{HNCH}_{2}\right), 6.93$ (d, $J 1,8-\mathrm{H}), 7.2-7.4\left(\mathrm{~m}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 8.10(\mathrm{~d}, J 1,6-\mathrm{H})$ and $8.30(\mathrm{br} \mathrm{t}$, J 6, NH); $m / z 271\left(M^{+}\right) ; 4-\left[2^{\prime}-(\mathrm{N}, \mathrm{N}\right.$-dimethylamino)ethylamino $]$-2-methylthioimidazo [1,5-a]-1,3,5-triazine 78 f (1.7 g , 34%), colourless solid, m.p. $133-135^{\circ} \mathrm{C}$ (Found: C, 47.4; H, 6.3; $\mathrm{N}, 33.0 ; \mathrm{S}, 12.4 . \mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{~S}$ requires C, 47.6; H, 6.39; N, 33.3; $\mathrm{S}, 12.7 \%) ; v_{\max } / \mathrm{cm}^{-1} 1255,1350,1370,1495,1620$ and $3120 ; \delta_{\mathrm{H}}$ $2.32\left[\mathrm{~s}, \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right], 2.54\left(\mathrm{~s}, \mathrm{SCH}_{3}\right), 2.63\left(\mathrm{t}, J 6, \mathrm{HNCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right)$, 3.71 (t, J 6, HNCH ${ }_{2} \mathrm{CH}_{2}$), 7.16 (d, J 1, 8-H), 8.00 (d, J 1, 6-H) and 12.00 (vbr s, NH); $m / z 252\left(M^{+}\right)$.

Reactions of 4-Benzamidoimidazo[1,5-a]-1,3,5-triazines 76.(a) With bromine. Bromine (1.2 g) was added to a stirred solution of compound 76a (1.2 g) in glacial acetic acid $\left(95 \mathrm{~cm}^{3}\right)$ and trifluoroacetic acid $\left(1 \mathrm{~cm}^{3}\right)$ maintained at $70^{\circ} \mathrm{C}$. The solid which separated was collected, recrystallised from DMFmethanol and identified as 4-benzamido-8-bromoimidazo $[1,5$ -a]-1,3,5-triazine 76b ($1.5 \mathrm{~g}, 76 \%$), a buff solid, m.p. $286^{\circ} \mathrm{C}$ (decomp.) (Found: C, 45.2; H, 2.35; Br, 25.2; N, 22.1. $\mathrm{C}_{12} \mathrm{H}_{8}$ $\mathrm{BrN}_{5} \mathrm{O}$ requires C, $45.3 ; \mathrm{H}, 2.53 ; \mathrm{Br}, 25.1 ; \mathrm{N}, 22.0 \%$); $v_{\text {max }} / \mathrm{cm}^{-1}$ $1210,1285,1320,1360,1380,1600,1650,3100$ and 3140 ; $\delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$-DMSO $) 7.50-7.70(\mathrm{~m}, 3 \mathrm{PhH}), 7.86(\mathrm{~s}, 2-\mathrm{H}), 8.30-8.36$ $(\mathrm{m}, 2 \mathrm{PhH}), 8.76(\mathrm{~s}, 6-\mathrm{H})$ and $12.91(\mathrm{br} \mathrm{s}, \mathrm{NH}) ; m / z 318\left(M^{+}\right)$.
(b) With phosphoryl chloride and dimethylformamide. Phosphoryl chloride (4.59 g) was slowly added with stirring to a slurry of compound $76 \mathrm{a}(4.78 \mathrm{~g}$) in dimethylformamide (40 cm^{3}). The slurry was then heated to $105^{\circ} \mathrm{C}$ and allowed to cool whilst being stirred. After evaporation, water $\left(50 \mathrm{~cm}^{3}\right)$ was added to the residue and the mixture stirred until homogeneous. This solution was then adjusted to pH 7 (saturated aq. NaHCO_{3}) and heated at $100^{\circ} \mathrm{C}(30 \mathrm{~min})$. The aqueous solution was then extracted with chloroform (3×200 cm^{3}) and the combined extracts were washed, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The residue was purified by MPLC (19:1, $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ as eluent) and the major component ($R_{\mathrm{f}} 0.12$) collected, recrystallised from dioxane and identified as N, N -dimethyl- N^{\prime}-(8-formylimidazo[1,5-a $]$-1,3,5-triazin-4-yl) formamidine $75(\mathrm{R}=\mathrm{CHO})(1.8 \mathrm{~g}, 41 \%)$, orange-yellow prisms, m.p. $225-227^{\circ} \mathrm{C}$ (Found: C, 49.7; H, 4.65; N, 39.0. $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{6} \mathrm{O}$ requires $\mathrm{C}, 49.5 ; \mathrm{H}, 4.62 ; \mathrm{N}, 38.5 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1295,1325,1350$, 1410, 1430, 1510, 1590, 1645, 1680, 3130 and $3170 ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$ DMSO) $3.35\left[\mathrm{~s}, \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right], 8.30(\mathrm{~s}, 2-\mathrm{H}), 8.55(\mathrm{~s}, 6-\mathrm{H}), 9.10(\mathrm{~s}$, $\mathrm{CH}=\mathrm{N}$) and $10.00(\mathrm{~s}, \mathrm{CH}=\mathrm{O}) ; m / z 218\left(\mathrm{M}^{+}\right)$.
(c) With propylamine. A suspension of compound $76 \mathrm{~b}(1.0 \mathrm{~g})$ in ethanol ($100 \mathrm{~cm}^{3}$) was heated under reflux and propylamine $(0.59 \mathrm{~g})$ was added. The mixture became homogeneous and was then evaporated to give a brown oil which was purified by MPLC ($9: 1, \mathrm{CHCl}_{3}-\mathrm{MeOH}$ as eluent). The major component ($R_{\mathrm{f}} 0.24$) was collected, crystallised from light petroleum (b.p.
$80-100^{\circ} \mathrm{C}$) and identified as N -benzoyl- N^{\prime}-propylguanidine 79 $(0.3 \mathrm{~g}, 44 \%)$, pale orange crystals, m.p. $75-77^{\circ} \mathrm{C}$ (Found: C, 64.6; $\mathrm{H}, 7.6 ; \mathrm{N}$, 20.4. $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}$ requires $\mathrm{C}, 64.4 ; \mathrm{H}, 7.37$; $\mathrm{N}, 20.5 \%) ; v_{\max } / \mathrm{cm}^{-1} 1370,1560,1680,2970$ and $3330 ; \delta_{\mathrm{H}} 0.98$ (t, J 7, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.63 (sextet, J 7, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), 3.10 (m, $\mathrm{NHCH}_{2} \mathrm{CH}_{2}$), 6.20-8.00 (vbr s, NH and NH_{2}), 7.34-7.48 (m, 3 $\mathrm{Ph} H)$ and 8.11-8.19 (m, $2 \mathrm{Ph} H) ; m / z 205\left(M^{+}\right)$.

Addition-Elimination Reactions of 5-Aminoimidazoles 3.-(a) With diethyl ethoxymethylenemalonate 5. A mixture of $1,2-$ dimethyl-5-nitroimidazole ${ }^{24}$ 4e $(100 \mathrm{~g}, 0.71 \mathrm{~mol})$, diethyl ethoxymethylenemalonate $5(153 \mathrm{~g}, 0.71 \mathrm{~mol})$ and $5 \% \mathrm{Pd} / \mathrm{C}$ $(25 \mathrm{~g})$ in ethanol ($4 \mathrm{dm}^{3}$) was vigorously shaken under an atmosphere of hydrogen until 3 mol equiv. of gas had been consumed. The catalyst was filtered off and evaporation of the filtrate gave a brown oil which was dissolved in $2 \mathrm{~mol} \mathrm{dm}^{-3}$ $\mathrm{HCl}\left(1 \mathrm{dm}^{3}\right)$. This solution was purified by pH gradient extraction with ethyl acetate at $\mathrm{pH} 5,7$ and 9 . The extract at pH 5 was discarded.

The extract at pH 7 was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give a brown oil (15 g) which was dissolved in a small volume of ethyl acetate and a little light petroleum (b.p. $40-60^{\circ} \mathrm{C}$) was added. The resulting solid was collected and recrystallisation from ethanol gave diethyl (5-amino-1,2-dimethylimidazol-4-yl)methylenemalonate 18e ($9.2 \mathrm{~g}, 5 \%$), as yellow prisms, m.p. 195$196{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 55.5 ; \mathrm{H}, 6.8 ; \mathrm{N}, 14.9 . \mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires C, 55.5; H, 6.81; N, 14.9\%); $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 211$ ($\varepsilon 6018$), 240 (ε 6606) and 374 ($\varepsilon 25835$); $v_{\text {max }} / \mathrm{cm}^{-1} 1210,1255,1562,1583,1680$, $1700,2985,3240$ and $3360 ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]-\mathrm{DMSO}+\mathrm{CDCl}_{3}\right) 1.28(\mathrm{t}$, $\left.J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.31\left(\mathrm{t}, \mathrm{J} 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.18\left(\mathrm{~s}, \mathrm{CCH}_{3}\right), 3.30$ $\left(\mathrm{s}, \mathrm{NCH}_{3}\right), 4.17\left(\mathrm{q}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.28\left(\mathrm{q}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $5.58\left(\mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right)$ and $7.6(\mathrm{~s}, \mathrm{CH}) ; m / z 281\left(M^{+}\right)$.

The mother liquor from the pH 7 extraction was further diluted with ether to precipitate a second solid. This was collected and recrystallisation from ethyl acetate gave $4,4^{\prime}$-bis(5 -diethoxycarbonylethyleneamino-1,2-dimethylimidazole) 15e (2.0 $\mathrm{g}, 1 \%$), as an off-white solid, m.p. $209-211^{\circ} \mathrm{C}$ (Found: C, 55.9 ; H, 6.5; $\mathrm{N}, 15.0 . \mathrm{C}_{26} \mathrm{H}_{36} \mathrm{~N}_{6} \mathrm{O}_{8}$ requires $\mathrm{C}, 55.7 ; \mathrm{H}, 6.47 ; \mathrm{N}, 15.0 \%$; $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 216(\varepsilon \quad 22366)$, 277 ($\varepsilon 20024$) and 310s (ε 17377); $v_{\text {max }} / \mathrm{cm}^{-1} 1220,1260,1370,1417,1600,1642,1686,2980$ and $3420 ; \delta_{\mathrm{H}} 1.27\left(\mathrm{t}, \mathrm{J} 7,2 \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.38(\mathrm{t}, J 7,2$ $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.30\left(\mathrm{~s}, 2 \mathrm{CCH}_{3}\right), 3.40\left(\mathrm{~s}, 2 \mathrm{NCH}_{3}\right), 4.10(\mathrm{q}, \mathrm{J} 7,2$ $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $4.20\left(\mathrm{q}, \mathrm{J} 7,2 \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 8.03(\mathrm{~d}, J 12,2 \mathrm{HNCH})$ and $10.50(\mathrm{~d}, J 12,2 H \mathrm{NCH}) ; m / z 560\left(M^{+}\right)$.

The remainder of the mother liquor from the pH 7 extraction was combined with the pH 9 extract and evaporated to give a crude yield of the major product 10 a ($130 \mathrm{~g}, 65 \%$) which could be used without further purification. An analytical sample was obtained using MPLC $\left(9: 1, \mathrm{CHCl}_{3}-\mathrm{MeOH}\right.$ as eluent). The product was washed with ether and identified as 5 -diethoxycarbonylethyleneamino-1,2-dimethylimidazole 17e, an amorphous solid, m.p. $60-63^{\circ} \mathrm{C}$ (Found: C, 55.1; H, 6.7; N, 14.8. $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires $\mathrm{C}, 55.5 ; \mathrm{H}, 6.81 ; \mathrm{N}, 14.9 \%$); $\lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 217(\varepsilon 10188)$ and $291(\varepsilon 12698) ; v_{\max } / \mathrm{cm}^{-1} 1230$, 1617, 1660, 1710, 2980 and $3720 ; \delta_{\mathrm{H}} 1.28\left(\mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right.$), $1.37\left(\mathrm{t}, \mathrm{J} 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.36\left(\mathrm{~s}, \mathrm{CCH}_{3}\right), 3.42\left(\mathrm{~s}, \mathrm{NCH}_{3}\right), 4.18(\mathrm{q}$, $\left.J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.30\left(\mathrm{q}, \mathrm{J} 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 6.79(\mathrm{~s}, 4-\mathrm{H}), 7.98(\mathrm{~d}$, $J 12, \mathrm{HNCH})$ and 10.36 (d, $J 12, H \mathrm{NCH})$.
The following compounds were similarly prepared from the appropriate 5-nitroimidazole 4.

1-Methyl-5-nitroimidazole ${ }^{25} \mathbf{4 k}(2.54 \mathrm{~g})$ gave 5 -diethoxy-carbonylethyleneamino-1-methylimidazole $17 \mathrm{k}(3.3 \mathrm{~g}, 62 \%$), as a colourless solid, m.p. $97-98^{\circ} \mathrm{C}$ (Found: C, 54.0; H, 6.45; N, 15.7. $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires C, $53.9 ; \mathrm{H}, 6.41 ; \mathrm{N}, 15.7 \%$); $v_{\text {max }} / \mathrm{cm}^{-1}$ 1230, 1265, 1380, 1605, 1645, 1690, 2990 and $3110 ; \delta_{\mathrm{H}} 1.3$ (t, J7, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $1.35\left(\mathrm{t}, \mathrm{J} 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.55\left(\mathrm{~s}, \mathrm{NCH}_{3}\right), 4.17(\mathrm{q}$, $J 7, \mathrm{CH}_{2} \mathrm{CH}_{3}$), $4.24\left(\mathrm{q}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 6.83(\mathrm{~s}, 4-\mathrm{H}), 7.28(\mathrm{~s}$, $2-\mathrm{H}), 7.98$ (d, J12, HNCH) and 10.4 (br d, J 12, HNCH).

1-(2-Hydroxyethyl)-2-methyl-5-nitroimidazole ${ }^{26} 41$ (200 g) gave 4,4'-bis[5-diethoxycarbonylethyleneamino-1-(2-hydroxy-ethyl)-2-methylimidazole] $151(1.2 \mathrm{~g}, 0.4 \%)$ as yellow prisms, m.p. $190-192{ }^{\circ} \mathrm{C}$ (Found: C, $54.0 ; \mathrm{H}, 6.5 ; \mathrm{N}, 13.6 . \mathrm{C}_{28} \mathrm{H}_{40} \mathrm{~N}_{6} \mathrm{O}_{10}$ requires C, 54.2; H, 6.50; N, 13.5\%); $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 281$ (ε 16200) and 311 ($\varepsilon 18900$); $v_{\text {max }} / \mathrm{cm}^{-1} 1250,1302,1373,1400$, 1595, 1655, 1690, 2960, 3200 and $3460 ; \delta_{\mathrm{H}} 1.25$ (t, J 7, 2 $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $1.30\left(\mathrm{t}, \mathrm{J} 7,2 \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.30\left(\mathrm{~s}, 2 \mathrm{CCH}_{3}\right), 3.80$ (br s, $2 \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$), $4.07\left(\mathrm{q}, J 7,2 \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.18(\mathrm{q}, J 7,2$ $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), 7.81 (d, J 13, 2 HNCH) and 10.50 (br d, J 13, 2 $H \mathrm{NCH}$), and 5-diethoxycarbonylethyleneamino-1-(2-hydroxy-ethyl)-2-methylimidazole $171(117.6 \mathrm{~g}, 32 \%)$, a buff amorphous solid, m.p. $190-192^{\circ} \mathrm{C}$ (Found: C, 54.1; H, 6.9; N, 13.7. $\mathrm{C}_{14}{ }^{-}$ $\mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{5}$ requires C, $54.0 ; \mathrm{H}, 6.8 ; \mathrm{N}, 13.5 \%$); $\lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm}$ $218(\varepsilon 10200)$ and $305(\varepsilon 15200)$; $v_{\text {max }} / \mathrm{cm}^{-1} 1225,1328,1380$, $1445,1510,1585,1650,1690$ and $2650-3300 ; \delta_{\mathrm{H}} 1.25(\mathrm{t}, J 7,2$ $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $2.25\left(\mathrm{~s}, \mathrm{CCH}_{3}\right), 3.45-4.30\left(\mathrm{~m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right.$ and 2 $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), 5.15 (vbr s, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$), 6.67 (s, 4-H), 7.80 (br s, HNCH) and 10.15 (vbr s, HNCH). 2-Isopropyl-1-methyl-5nitroimidazole ${ }^{27} 4 \mathrm{ff}(200 \mathrm{~g})$ gave diethyl (5-amino-2-isopropyl-1-methylimidazol-4-yl)methylenemalonate $18 \mathrm{f}(16.3,4.5 \%)$ as yellow prisms, m.p. $161-162^{\circ} \mathrm{C}$ (Found: C, 58.2; H, 7.3; N, 13.6. $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires C, $58.2 ; \mathrm{H}, 7.49 ; \mathrm{N}, 13.6 \%$); $v_{\text {max }} / \mathrm{cm}^{-1}$ $1210,1245,1600,1680,1710,2980,3240$ and $3360 ; \delta_{\mathrm{H}} 1.20$ [d, J 7, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.26\left(\mathrm{t}, \mathrm{J} 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.32\left(\mathrm{t}, \mathrm{J} 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, 2.80 [sept, $J 7, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$], $3.30\left(\mathrm{~s}, \mathrm{NCH}_{3}\right), 4.0\left(\mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right)$, $4.2\left(\mathrm{q}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.35\left(\mathrm{q}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$ and 7.25 (s, CH); 4,4'-bis(5-diethoxycarbonylethyleneamino-2-isopropyl-1-methylimidazole) $15 \mathrm{f}(6.0 \mathrm{~g}, 1.6 \%)$, an amorphous solid, m.p. ${ }^{172-173}{ }^{\circ} \mathrm{C}$ (Found: C, 58.4; H, 7.5; N, 13.7. $\mathrm{C}_{30} \mathrm{H}_{44} \mathrm{~N}_{6} \mathrm{O}_{8}$ requires $\mathrm{C}, 58.4 ; \mathrm{H}, 7.19 ; \mathrm{N}, 13.6 \%$); $v_{\max } / \mathrm{cm}^{-1} 1240,1375,1420$, $1595,1630,1680$ and $2980 ; \delta_{\mathrm{H}} 1.2\left(\mathrm{t}, \mathrm{J} 7,2 \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.28[\mathrm{~d}, J$ 7, $2 \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$], $1.38\left(\mathrm{t}, J 7,2 \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.88$ [sept, $J 7,2$ $\left.\mathrm{C} H\left(\mathrm{CH}_{3}\right)_{2}\right], 3.4\left(\mathrm{~s}, 2 \mathrm{NCH}_{3}\right), 4.07\left(\mathrm{q}, \mathrm{J}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.2(\mathrm{q}, \mathrm{J}$ $7,2 \mathrm{OCH}_{2} \mathrm{CH}_{3}$), $8.15(\mathrm{~d}, J 12,2 \mathrm{HNCH})$ and $10.55(\mathrm{~d}, J 12,2$ $H \mathrm{NCH}$) and 5-diethoxycarbonylethyleneamino-2-isopropyl-1methylimidazole 17 f as a brown impure oil which was used without further purification.

1-Methyl-5-nitro-2-styrylimidazole ${ }^{28}$ 4o (11.45 g) gave diethyl (5-amino-1-methyl-2-phenylethylimidazol-4-yl)methylenemalonate $18 \mathrm{~m}(0.6 \mathrm{~g}, 3 \%)$ as a yellow solid, m.p. $153-155^{\circ} \mathrm{C}$ (Found: C, 64.2; H, 6.9; N, 11.2. $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires C, 64.7; $\mathrm{H}, 6.74, \mathrm{~N}, 11.3 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1210,1230,1580,1690,2990,3240$, 3340 and $3410 ; \delta_{\mathrm{H}} 1.25\left(\mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.30(\mathrm{t}, J 7$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $2.60-3.15\left(\mathrm{~m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$ and NCH_{3}), 3.88 (br s, $\left.\mathrm{NH}_{2}\right), 4.00-4.60\left(\mathrm{~m}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 7.17\left(\mathrm{br} \mathrm{s}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$ and $7.20(\mathrm{~s}$, CH); $m / z 371\left(M^{+}\right)$and 5-diethoxycarbonylethyleneamino-1-methyl-2-phenylethylimidazole $17 \mathrm{~m}(8.0 \mathrm{~g}, 43 \%$) a buff solid, m.p. $62-64{ }^{\circ} \mathrm{C}$ (Found: C, 63.2; H, 7.1; N, 11.0. $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{4} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 63.2 ; \mathrm{H}, 6.84 ; \mathrm{N}, 11.1 \%$); $v_{\max } / \mathrm{cm}^{-1} 1220,1260,1380$, $1595,1650,1695,2990$ and $3240 ; \delta_{\mathrm{H}} 1.27\left(\mathrm{t}, \mathrm{J} 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.32$ (t, J 7, OCH CH_{3}), $2.10\left(\mathrm{~s}, \mathrm{H}_{2} \mathrm{O}\right), 2.8-3.1\left(\mathrm{~m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.17(\mathrm{~s}$, $\left.\mathrm{NCH}_{3}\right), 4.19\left(\mathrm{q}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.25\left(\mathrm{q}, \mathrm{J} 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 6.80$ $(\mathrm{s}, 4-H), 7.05-7.25\left(\mathrm{~m}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.95(\mathrm{~d}, J 13, \mathrm{HNCH})$ and 10.30 (br d, $J 13, H \mathrm{NCH}$).
(b) With ethoxymethylenemalononitrile 6. A solution of 1,2-dimethyl-5-nitroimidazole ${ }^{24} 4 \mathrm{e}(6.0 \mathrm{~g})$ in dioxane ($250 \mathrm{~cm}^{3}$) was reduced to give a solution of the amine according to the procedure described in the preceding paper. ${ }^{1}$ After removal of the catalyst, ethoxymethylenemalononitrile 6 (6.5 g) was added with stirring to the filtrate and the mixture stirred (30 min). The solid product was collected and recrystallised from ethanol to give 5-amino-4-(2,2-dicyanovinyl)-1,2-dimethylimidazole 42e ($6.7 \mathrm{~g}, 84 \%$) as a yellow solid, m.p. indistinct (due to cyclisation) (Found: C, 57.9; H, 4.65; N, 37.1. $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~N}_{5}$ requires C, 57.7 ; H, $4.85 ; \mathrm{N}, 37.4 \%) ; v_{\max } / \mathrm{cm}^{-1} 1315,1370,1490,1565,1610,1665$, 2200, 2210, 3180, 3340 and $3380 ; \delta_{\mathrm{H}} 2.20$ (s, CCH_{3}), 3.28 (s , NCH_{3}), $7.46\left(\mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right)$ and $7.60(\mathrm{~s}, \mathrm{CH})$.

The following compounds were similarly prepared from 1-(2-hydroxyethyl)-2-methyl-5-nitroimidazole ${ }^{26} 41(5.14 \mathrm{~g})$ and 2-isopropyl-1-methyl-5-nitroimidazole ${ }^{27} \mathbf{4 f}(8.45 \mathrm{~g})$ respectively. 5-Amino-4-(2,2-dicyanovinyl)-1-(2-hydroxyethyl)-2-methylimidazole 42c ($4.7 \mathrm{~g}, 72 \%$), yellow needles, m.p. $198-200{ }^{\circ} \mathrm{C}$ (Found: C, $55.0 ; \mathrm{H}, 5.0 ; \mathrm{N}, 32.2 . \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{O}$ requires $\mathrm{C}, 55.3 ; \mathrm{H}$, 5.07 ; N, 32.3%); $v_{\text {max }} / \mathrm{cm}^{-1} 1318,1350,1555,1605,1677,2200$, 2218, 3212, 3360 and 3458; $\delta_{\mathrm{H}} 2.24\left(\mathrm{~s}, \mathrm{CCH}_{3}\right)$, 3.45-3.90 (m, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$), 5.00 (br t, J6, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$), 7.42 (br s, NH_{2}) and 7.60 (s, CH); 5-amino-4-(2,2-dicyanovinyl)-2-isopropyl-1methylimidazole 42d ($6.13 \mathrm{~g}, 57 \%$), yellow prisms, m.p. 216$218{ }^{\circ} \mathrm{C}$ (Found: C, 61.2; H, 5.9; N, 32.8. $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{5}$ requires C, $61.4 ; \mathrm{H}, 6.09 ; \mathrm{N}, 32.5 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1235,1270,1340,1395,1460$, $1550,1600,1660,2210,2940,2980,3220$ and $3350 ; \delta_{\mathrm{H}} 1.19$ [d, J 7, $\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$], 2.94 [sept, $\mathrm{J} 7, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$], $3.32\left(\mathrm{~s}, \mathrm{NCH}_{3}\right), 7.29$ ($\mathrm{br} \mathrm{s}, \mathrm{NH}_{2}$) and $7.64(\mathrm{~s}, \mathrm{CH}) ; m / z 215\left(M^{+}\right)$.
(c) With ethyl (ethoxymethylene)cyanoacetate 8. A solution of 1,2-dimethyl-5-nitroimidazole ${ }^{24} 4 \mathrm{e}(12.5 \mathrm{~g})$ in dioxane (150 cm^{3}) was reduced to give a solution of the amine. After removal of the catalyst, a solution of ethyl (ethoxymethylene)cyanoacetate $8(15 \mathrm{~g})$ in dioxane $\left(100 \mathrm{~cm}^{3}\right)$ was added and the mixture allowed to stand at ambient temperature (18 h). The resulting solid was collected and recrystallised from ethanol to give ethyl 3-(5-amino-1,2-dimethylimidazol-4-yl)-2-cyanoprop-2-enoate
64e ($9.5 \mathrm{~g}, 46 \%$) as yellow crystals, m.p. 231-233 ${ }^{\circ} \mathrm{C}$ (Found: C, 56.6; $\mathrm{H}, 6.15 ; \mathrm{N}, 23.6$. $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires $\mathrm{C}, 56.4 ; \mathrm{H}, 6.02 ; \mathrm{N}$, 23.9%); $v_{\text {max }} / \mathrm{cm}^{-1} 1250,1490,1535,1597,1640,1670,2208$, 3240, 3340 and $3405 ; \delta_{\mathrm{H}} 1.25\left(\mathrm{t}, \mathrm{J} 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $2.2\left(\mathrm{~s}, \mathrm{CCH}_{3}\right)$, $3.27\left(\mathrm{NCH}_{3}\right), 4.14\left(\mathrm{q}, \mathrm{J} 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 7.3\left(\mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right)$ and 7.98 (s, CH).

The following compounds were similarly prepared from 1 -(2-hydroxyethyl)-2-methyl-5-nitroimidazole ${ }^{26} 41(4.23 \mathrm{~g})$ and 2-isopropyl-1-methyl-5-nitroimidazole ${ }^{27}$ 4f $(6.76 \mathrm{~g})$ respectively. Ethyl 3-[5-amino-1-(2-hydroxyethyl)-2-methylimidazol-4- $y l]$-2-cyanoprop-2-enoate $641(4.7 \mathrm{~g}, 72 \%$), a yellow solid, m.p. 195-197 ${ }^{\circ} \mathrm{C}$ (Found: C, 54.5; H, 6.0; N, 21.1. $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{3}$ requires $\mathrm{C}, 54.55 ; \mathrm{H}, 6.06 ; \mathrm{N}, 21.2 \%) ; v_{\max } / \mathrm{cm}^{-1} 1250,1410,1530$, $1590,1665,2205,3190,3350$ and $3480 ; \delta_{\mathrm{H}} 1.24$ (t, J 7, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $2.25\left(\mathrm{~s}, \mathrm{CCH}_{3}\right), 3.40-3.90\left(\mathrm{~m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 4.15$ (q, J 7, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), 5.00 (br t, J 6, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$), 7.27 (br s, NH_{2}) and 7.96 (s, CH); ethyl 3-(5-amino-2-isopropyl-1-methylimidazol-4-yl)-2-cyanoprop-2-enoate 64f ($7.0 \mathrm{~g}, 67 \%$), a yellow solid, m.p. 183-184 ${ }^{\circ} \mathrm{C}$ (Found: C, 59.0; H, 7.0; N, 21.3. $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires C, $59.5 ; \mathrm{H}, 6.92 ; \mathrm{N}, 21.4 \%$); $v_{\text {max }} / \mathrm{cm}^{-1}$ $1240,1290,1400,1530,1585,1655,2210,2980,3205$ and $3340 ; \delta_{\mathrm{H}}$ $1.20\left[\mathrm{~d}, \mathrm{~J} 7, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.25\left(\mathrm{t}, \mathrm{J} 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.92$ [sept, $J 7$, $\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$], $3.30\left(\mathrm{~s}, \mathrm{NCH}_{3}\right), 4.15\left(\mathrm{q}, \mathrm{J} 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 7.25(\mathrm{br} \mathrm{s}$, NH_{2}) and $8.00(\mathrm{~s}, \mathrm{CH})$.
(d) With ethoxymethyleneurethane ${ }^{21}$ 9. A solution of 5-amino-1,2-dimethylimidazole $3 \mathrm{e}(2.22 \mathrm{~g})$ in dioxane $\left(40 \mathrm{~cm}^{3}\right)$ was prepared by the method described in the preceding paper. ${ }^{1}$ Ethoxymethyleneurethane ${ }^{21} 9(2.9 \mathrm{~g})$ was added and the mixture warmed to $60^{\circ} \mathrm{C}$ with stirring. The solution was then stirred at ambient temperature (30 min) and the buff solid which had formed was collected and identified as the product 69e $(2.05 \mathrm{~g}, 49 \%)$ which was used without further purification. Recrystallisation of a small sample from acetonitrile gave N -(1,2-dimethylimidazol-5-yl)-N'-ethoxycarbonylformamidine 69e as colourless prisms, m.p. indistinct (due to cyclisation) (Found: C, 51.3; H, 6.7; N, 26.6. $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires C, 51.4; $\mathrm{H}, 6.71$; $\mathrm{N}, 26.7 \%) ; v_{\text {max }} / \mathrm{cm}^{-1} 1240,1290,1540,1645$ and $1745 ; \delta_{\mathrm{H}} 1.25(\mathrm{t}$, $J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), $2.25\left(\mathrm{~s}, \mathrm{CCH}_{3}\right), 3.45\left(\mathrm{~s}, \mathrm{NCH}_{3}\right), 4.25(\mathrm{q}, \mathrm{J} 7$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $6.75(\mathrm{~s}, 4-\mathrm{H}), 8.50(\mathrm{~s}, \mathrm{HNCH})$ and $10.65(\mathrm{br} \mathrm{s}, \mathrm{NH}) ;$ $m / z 210\left(M^{+}\right)$.

The following compounds were similarly prepared from 1-methyl-5-nitroimidazole ${ }^{25} 4 \mathrm{k}(6.35 \mathrm{~g}$) and 1-(2-hydroxyethyl)-2-methyl-5-nitroimidazole ${ }^{26}$ 41 (8.55 g), respectively. N -Ethoxycarbonyl-N'-(1-methylimidazol-5-yl)formamidine 69 k
$(5.1 \mathrm{~g}, 52 \%)$ as colourless lustrous plates, m.p. $161-163^{\circ} \mathrm{C}$ (Found: C, 48.6; H, 5.9; N, 29.0. $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}$ requires C, 49.0; H, 6.17; $\mathrm{N}, 28.6 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1240,1285,1510,1660,1740,2710$ and $3130 ; \delta_{\mathrm{H}} 1.23\left(\mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.46\left(\mathrm{~s}, \mathrm{CCH}_{3}\right), 4.19(\mathrm{q}$, $J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), 6.77 (d, J 1, 4-H), 7.45 (d, J 1, 2-H), 8.36 (d, J 10, HNCH) and 10.83 (br d, $J 10, \mathrm{NH}$); $m / z 196\left(M^{+}\right)$; N-ethoxycarbonyl- N^{\prime}-[1-(2-hydroxyethyl)-2-methylimidazol-5$y l]$ formamidine $691(2.3 \mathrm{~g}, 33 \%)$, colourless prisms, m.p. 172$173{ }^{\circ} \mathrm{C}$ (Found: C, 50.1; H, 6.6; N, 23.2. $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{3}$ requires C, $50.0 ; \mathrm{H}, 6.71 ; \mathrm{N}, 23.3 \%) ; v_{\text {max }} / \mathrm{cm}^{-1} 1220,1240,1420,1645$ and 1730; $\delta_{\mathrm{H}} 1.24\left(\mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.26\left(\mathrm{~s}, \mathrm{CCH}_{3}\right), 3.52(\mathrm{t}, J 6$, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$), $3.86\left(\mathrm{t}, J 6, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 4.19(\mathrm{q}, J 7$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), 4.78 ($\mathrm{br} \mathrm{s}, \mathrm{OH}$), $6.57(\mathrm{~s}, 4-\mathrm{H}), 8.31$ (s, HNCH$)$ and 10.64 (br s, NH); $m / z 240\left(M^{+}\right)$.
(e) With ethyl N -cyanoformimidate ${ }^{21}$ 10. A solution of 1,2-dimethyl-5-nitroimidazole $4 \mathrm{e}(7.05 \mathrm{~g})$ in dioxane ($250 \mathrm{~cm}^{3}$) was reduced to the amine according to the previously described procedure. Ethyl N-cyanoformimidate ${ }^{21} 10(4.9 \mathrm{~g})$ was added with stirring and the resulting solid was collected (5.3 g). Concentration of the filtrate under diminished pressure gave a second crop (1.75 g). Both crops were shown by TLC to be twocomponent mixtures and were combined. The mixture (7.05 g) was separated by MPLC ($9: 1$ chloroform-methanol as eluent). The first component ($R_{\mathrm{f}} 0.17$) was collected and concentration and trituration with ether gave 5-amino-4- N -cyanoiminomethyl-1,2-dimethylimidazole 83a ($1.88 \mathrm{~g}, 23 \%$) as pale yellow crystals, m.p. $208{ }^{\circ} \mathrm{C}$ (Found: C, 51.2; H, 5.4; N, 43.2. $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}_{5}$ requires C , $51.5 ; \mathrm{H}, 5.56 ; \mathrm{N}, 42.9 \%$) $v_{\text {max }} / \mathrm{cm}^{-1} 1295,1310,1410,1520,1610$, 2170,3150 and $3330 ; \delta_{\mathrm{H}} 2.2\left(\mathrm{~s}, \mathrm{CCH}_{3}\right), 3.35\left(\mathrm{~s}, \mathrm{NCH}_{3}\right), 7.55(\mathrm{br} \mathrm{s}$, NH_{2}) and $8.45(\mathrm{~s}, \mathrm{CH}) ; m / z 163\left(M^{+}\right)$.

The second component ($R_{\mathrm{f}} 0.10$) was collected and concentration and trituration with ether gave a solid which was recrystallised from acetonitrile to give N -cyano- N^{\prime}-(1,2-di-methylimidazol-5-yl)formamidine 84a ($2.1 \mathrm{~g}, 26 \%$) as tiny needles, m.p. $185-187^{\circ} \mathrm{C}$ (Found: C, 51.6; H, 5.6; N, 43.0 . $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}_{5}$ requires $\mathrm{C}, 51.5 ; \mathrm{H}, 5.56 ; \mathrm{N}, 42.9 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1320$, $1365,1400,1510,1640,2165$ and $2205 ; \delta_{\mathrm{H}}\left(\mathrm{at} 100^{\circ} \mathrm{C}\right) 2.30(\mathrm{~s}$, CCH_{3}), $3.40\left(\mathrm{~s}, \mathrm{NCH}_{3}\right), 4.5(\mathrm{vbr} \mathrm{s}, \mathrm{HCNH}), 6.85(\mathrm{~s}, 4-\mathrm{H})$ and 8.15 (s, $H C N H$); $m / z 163\left(M^{+}\right)$.

The following compounds were similarly prepared from the appropriate 5 -nitroimidazole 4.

1-Methyl-5-nitroimidazole ${ }^{25} 4 \mathrm{k}(6.35 \mathrm{~g})$ gave 5 -amino-4-cyanoiminomethyl-1-methylimidazole 83b ($0.3 \mathrm{~g}, 4 \%$), as a pale yellow solid, m.p. ${ }^{184-186}{ }^{\circ} \mathrm{C}$ (Found: C, 48.1; H, 4.6; N, 46.9. $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}_{5}$ requires $\mathrm{C}, 48.3 ; \mathrm{H}, 4.73 ; \mathrm{N}, 47.0 \%$); $v_{\text {max }} / \mathrm{cm}^{-1}$ $1270,1330,1390,1515,1560,1600,2180,3080$ and $3340 ; \delta_{\mathrm{H}} 3.40$ ($\mathrm{s}, \mathrm{NCH}_{3}$), $7.35(\mathrm{~s}, 2-\mathrm{H}), 7.50\left(\mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right)$ and $8.60(\mathrm{~s}, \mathrm{CH})$; $m / z 149\left(M^{+}\right)$and N -cyano- N^{\prime}-(1-methylimidazol-5-yl)formamidine $\mathbf{8 4 b}(3.1 \mathrm{~g}, 42 \%)$ as colourless plates, m.p. $178-180^{\circ} \mathrm{C}$ (Found: C, 47.9; H, 4.8; N, 46.9. $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}_{5}$ requires $\mathrm{C}, 48.3 ; \mathrm{H}$, $4.73 ; \mathrm{N}, 47.0 \%$); $v_{\max } / \mathrm{cm}^{-1} 1250,1300,1360,1510,1550,1600$, 2200 and $3220 ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$-DMSO at $\left.100^{\circ} \mathrm{C}\right) 3.55\left(\mathrm{~s}, \mathrm{NCH}_{3}\right)$, $6.90(\mathrm{~s}, 4-\mathrm{H}), 7.60(\mathrm{~s}, 2-\mathrm{H}), 8.35(\mathrm{~s}, \mathrm{HNCH})$ and $10.90(\mathrm{vbr} \mathrm{s}$, NH); $m / z 149\left(M^{+}\right)$.

1-(2-Hydroxyethyl)-2-methyl-5-nitroimidazole ${ }^{26} 41$ (17.1 g) gave 5-amino-4-cyanoiminomethyl-1-(2-hydroxyethyl)-2-methylimidazole $83 \mathrm{c}(1.6 \mathrm{~g}, 8 \%)$ as a pale yellow solid, m.p. $183-184{ }^{\circ} \mathrm{C}$ (Found: C, 49.4; H, 5.6; N, 36.3. $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{O}$ requires C, 49.7; H, $5.74 ; \mathrm{N}, 36.3 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1240,1310,1380,1410,1530,1600$, 1650, 2150, 2960 and $3360 ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$-DMSO at $\left.100^{\circ} \mathrm{C}\right) 2.25$ ($\mathrm{s}, \mathrm{CCH}_{3}$), $3.65\left(\mathrm{t}, \mathrm{J} 5, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 3.90\left(\mathrm{t}, \mathrm{J} 5, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)$, 6.42 (br s, OH and NH_{2}) and $8.44(\mathrm{~s}, \mathrm{CH}) ; m / z 193\left(M^{+}\right)$.

2-Isopropyl-1-methyl-5-nitroimidazole ${ }^{27}$ 4f (16.9 g) gave 5-amino-4-cyanoiminomethyl-2-isopropyl-1-methylimidazole 83d $\left(6.9 \mathrm{~g}, 36 \%\right.$) as pale yellow needles, m.p. $149-151^{\circ} \mathrm{C}$ (Found: C, $56.3 ; \mathrm{H}, 6.9 ; \mathrm{N}, 37.0 . \mathrm{C}_{9} \mathrm{H}_{13} \mathrm{~N}_{5}$ requires $\mathrm{C}, 56.5 ; \mathrm{H}, 6.85 ; \mathrm{N}$, 36.6%); $v_{\text {max }} / \mathrm{cm}^{-1} 1270,1310,1400,1520,1600,2170,2970$ and $3300 ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$-DMSO at $\left.100^{\circ} \mathrm{C}\right) 1.25\left[\mathrm{~d}, \mathrm{~J} 7, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right]$,
2.8 [sept, $J 7, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$], $3.4\left(\mathrm{~s}, \mathrm{NCH}_{3}\right), 7.3\left(\mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right)$ and 8.5 (s, CH); m/z $191\left(M^{+}\right)$and N -cyano- N^{\prime}-(1-methyl-2-isopropyl-imidazol-5-yl)formamidine 84d ($2.1 \mathrm{~g}, 11 \%$) as colourless needles, m.p. $145-146^{\circ} \mathrm{C}$ (Found: C, $56.9 ; \mathrm{H}, 6.9$; N, 36.6. $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{~N}_{5}$ requires C, $56.5 ; \mathrm{H}, 6.85 ; \mathrm{N}, 36.6 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1310$, 1360, 1475, 1560, 1610, 2195 and 2970; $\delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$-DMSO at $\left.100^{\circ} \mathrm{C}\right) 1.25\left[\mathrm{~d}, J 7, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 3.05\left[\mathrm{sept}, J 7, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right]$, 3.45 (s, NCH_{3}), 6.80 (s, 4-H), 8.20 (s, HNCH), NH not visible; $m / z 191\left(M^{+}\right)$.
(f) With $\mathrm{S}, \mathrm{S}^{\prime}$-dimethyl N -cyanodithioimidocarbonate 12. A solution of 1,2-dimethyl-5-nitroimidazole ${ }^{24} \mathbf{4 e}(7.05 \mathrm{~g})$ in dioxane ($120 \mathrm{~cm}^{3}$) was reduced to the amine. S, S^{\prime}-Dimethyl N cyanodithioimidocarbonate $12(7.3 \mathrm{~g})$ was added with stirring to the filtrate and after 1 h the solution was concentrated to give a crystalline product. Recrystallisation from ethanol gave 5-amino-4-cyanoimino(thiomethyl)methyl-1,2-dimethylimidazole $83 \mathrm{e}\left(4.9 \mathrm{~g}, 47 \%\right.$) as buff needles, m.p. $202^{\circ} \mathrm{C}$ (Found: C, $45.6 ; \mathrm{H}$, 5.25; $\mathrm{N}, 33.1 ; \mathrm{S}, 15.2 . \mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{~S}$ requires C, 45.9; H, 5.30; N , $33.5 ; \mathrm{S}, 15.3 \%$); $v_{\max } / \mathrm{cm}^{-1} 1330,1450,1480,1575,1630,2170$, 3100, 3220, 3280 and $3400 ; \delta_{\mathrm{H}} 2.20\left(\mathrm{~s}, \mathrm{CCH}_{3}\right), 2.85\left(\mathrm{~s}, \mathrm{SCH}_{3}\right)$, $3.30\left(\mathrm{~s}, \mathrm{NCH}_{3}\right)$ and $7.40\left(\mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right) ; m / z 209\left(M^{+}\right)$.

Similarly 1-(2-hydroxyethyl)-2-methyl-5-nitroimidazole ${ }^{26} 41$ (17.1 g) gave 5-amino-4-cyanoimino(thiomethyl)methyl-1-(2-hydroxyethyl)-2-methylimidazole $83 \mathrm{f}(2.5 \mathrm{~g}, 10.5 \%$) as yellow needles, m.p. $216^{\circ} \mathrm{C}$ (with sintering at $170^{\circ} \mathrm{C}$) (Found: C, 45.4; $\mathrm{H}, 5.6 ; \mathrm{N}, 29.4 . \mathrm{C}_{9} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{OS}$ requires $\mathrm{C}, 45.2$; $\mathrm{H}, 5.48 ; \mathrm{N}, 29.3 \%$; $v_{\max } / \mathrm{cm}^{-1} 1320,1370,1480,1585,1625,2160$ and $3360 ; \delta_{\mathrm{H}} 2.25$ ($\mathrm{s}, \mathrm{CCH}_{3}$), $2.85\left(\mathrm{~s}, \mathrm{SCH}_{3}\right), 3.55\left(\mathrm{q}, J 6, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 3.85(\mathrm{t}$, $\left.J 6, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 5.00(\mathrm{t}, J 6, \mathrm{OH})$ and $7.40\left(\mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right) ; m / z 239$ (M^{+}).

The following procedure was followed using 5 -amino-1methylimidazole $\mathbf{3 k}$. A mixture of compound 3 k (776 mg) and S, S^{\prime}-dimethyl N-cyanodithioimidocarbonate $12(1.17 \mathrm{~g})$ in dioxane ($20 \mathrm{~cm}^{3}$) was heated to $50^{\circ} \mathrm{C}$ and stirred until homogeneous. The solution was then evaporated and shown by TLC to be a two-component mixture which was subjected to MPLC ($4: 1$, chloroform-methanol as eluent). The first component ($R_{\mathrm{f}} 0.4$) was collected and concentration and dilution with ether gave 5-amino-4-cyanoimino(thiomethyl)methyl-1methylimidazole $83 \mathrm{~g}(150 \mathrm{mg}, 10 \%)$ as tiny yellow squat needles, m.p. $167-168^{\circ} \mathrm{C}$ (Found: C, 42.8; H, 4.45; N, 35.6. $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{~S}$ requires $\mathrm{C}, 43.1 ; \mathrm{H}, 4.65 ; \mathrm{N}, 35.9 \%$); $v_{\max } / \mathrm{cm}^{-1} 1310,1390,1490$, 1545, 1580, 1640 and $2170 ; \delta_{\mathrm{H}} 2.90\left(\mathrm{~s}, \mathrm{SCH}_{3}\right), 3.40\left(\mathrm{~s}, \mathrm{NCH}_{3}\right)$, $7.35(\mathrm{~s}, \mathrm{CH})$ and $7.40\left(\mathrm{brs}, \mathrm{NH}_{2}\right) ; m / z 195\left(M^{+}\right)$. The second component ($R_{\mathrm{f}} 0.2$) was similarly collected and recrystallised from ethanol to give 3-cyano-1-(1-methylimidazol-5-yl)-2methylisothiourea $\mathbf{8 4 g}$ ($500 \mathrm{mg}, 32 \%$) as tiny colourless prisms, m.p. 274-275 ${ }^{\circ} \mathrm{C}$ (with sintering at $220^{\circ} \mathrm{C}$) (Found: C, 43.0 ; H, 4.4; $\mathrm{N}, 35.7 . \mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{~S}$ requires $\mathrm{C}, 43.1 ; \mathrm{H}, 4.65 ; \mathrm{N}, 35.9 \%$; $v_{\text {max }} / \mathrm{cm}^{-1} 1295,1340,1455,1560,2130,2930$ and $3170 ; \delta_{\mathrm{H}} 2.4$ $\left(\mathrm{s}, \mathrm{SCH}_{3}\right), 3.65\left(\mathrm{~s}, \mathrm{NCH}_{3}\right), 7.25(\mathrm{~d}, J 1,4-\mathrm{H}), 8.55(\mathrm{~d}, J 1,2-\mathrm{H})$ and $12.2(\mathrm{vbr} \mathrm{s}, \mathrm{NH}) ; \mathrm{m} / \mathrm{z} 195\left(\mathrm{M}^{+}\right)$.

Reactions of Diethyl (5-Amino-1,2-dimethylimidazol-4-ylmethylene)malonate 18e.-(a) With diethyl ethoxymethylenemalonate 5. A mixture of compound $18 \mathrm{e}(0.5 \mathrm{~g})$, compound 5 ($2.0 \mathrm{~cm}^{3}$), toluene ($40 \mathrm{~cm}^{3}$) and ethanol ($2 \mathrm{~cm}^{3}$) was heated at $100^{\circ} \mathrm{C}(8 \mathrm{~h})$. The residue, after evaporation, was subjected to MPLC (25:1, $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ as eluent) and the product (R_{f} 0.5) identified as 4-diethoxycarbonylvinyl-5-diethoxycarbonyl-vinylamino-1,2-dimethylimidazole 19a ($0.7 \mathrm{~g}, 87 \%$), a pale yellow solid, m.p. $157-158{ }^{\circ} \mathrm{C}$ (Found: C, 56.0 ; H, 6.7; N, 9.3. $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{8}$ requires C, $55.9 ; \mathrm{H}, 6.47 ; \mathrm{N}, 9.3 \%$); $v_{\text {max }} / \mathrm{cm}^{-1}$ $1235,1280,1385,1404,1618,1655,1705,2990$ and $3250 ; \delta_{\mathrm{H}}$ 1.15-1.55 (m, $\left.4 \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.33\left(\mathrm{~s}, \mathrm{CCH}_{3}\right), 3.40\left(\mathrm{~s}, \mathrm{NCH}_{3}\right)$, $4.0-4.55\left(\mathrm{~m}, 4 \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 7.22(\mathrm{~s}, \mathrm{C}=\mathrm{CH}), 7.9(\mathrm{~d}, \mathrm{~J} 12$, $\mathrm{HNCH})$ and $10.4(\mathrm{~d}, J 12, H \mathrm{NCH})$.
(b) With 3,4-dichlorophenyl isocyanate. A mixture of com-
pound $18 \mathrm{e}(1.7 \mathrm{~g})$ and 3,4-dichlorophenyl isocyanate $(1.14 \mathrm{~g})$ in dioxane ($50 \mathrm{~cm}^{3}$) was heated at $80^{\circ} \mathrm{C}(2 \mathrm{~h})$. Purification of the product by MPLC ($19: 1, \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ as eluent) gave N -(3,4-dichlorophenyl)- N^{\prime}-[4-(2,2-diethoxycarbonylvinyl)-1,2-
dimethylimidazol-5-yl]urea 20 ($0.95 \mathrm{~g}, 34 \%$) as a colourless solid, m.p. $186-187^{\circ} \mathrm{C}$ (Found: C, $50.6 ; \mathrm{H}, 5.3 ; \mathrm{Cl}, 15.2 ; \mathrm{N}, 11.9$. $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{5}$ requires C, $51.2 ; \mathrm{H}, 4.73 ; \mathrm{Cl}, 15.1 ; \mathrm{N}, 11.9 \%$); $\delta_{\mathrm{H}} 1.2\left(\mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.26\left(\mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.25(\mathrm{~s}$, CCH_{3}), $3.34\left(\mathrm{~s}, \mathrm{NCH}_{3}\right), 4.15\left(\mathrm{q}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.24(\mathrm{q}, J 7$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $7.34(\mathrm{~s}, \mathrm{C}=\mathrm{CH}), 7.38-7.50(\mathrm{~m}, 2 \mathrm{ArH}), 7.83(\mathrm{~d}, J 2$, 1 ArH), 8.7 (br s, NH) and 9.35 ($\mathrm{br} \mathrm{s}, \mathrm{NH}$).
(c) Acid-catalysed cyclisation. A solution of compound 18 e $(6.0 \mathrm{~g})$ in HCl -saturated ethanol ($240 \mathrm{~cm}^{3}$) was heated under reflux (1 h). The cooled reaction was neutralised (aqueous NaHCO_{3}) and then evaporated. The residue was purified by MPLC (49:1, $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ as eluent) and identified as 6-ethoxycarbonyl-2,3-dimethylimidazo[4,5-b] pyridin-5-one 21e ($4.1 \mathrm{~g}, 82 \%$), a pale yellow solid, m.p. $157-159^{\circ} \mathrm{C}$ (Found: C, 56.3; $\mathrm{H}, 5.6 ; \mathrm{N}, 17.9 . \mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires $\mathrm{C}, 56.2 ; \mathrm{H}, 5.57 ; \mathrm{N}$, 17.9%); $v_{\text {max }} / \mathrm{cm}^{-1} 1240,1283,1360,1500,1630,1685,2300-2800$ and 2990; $\delta_{\mathrm{H}} 1.45\left(\mathrm{t}, \mathrm{J} 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.5\left(\mathrm{~s}, \mathrm{CCH}_{3}\right), 3.7(\mathrm{~s}$, $\left.\mathrm{NCH}_{3}\right), 4.4\left(\mathrm{q}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 8.27(\mathrm{~s}, \mathrm{CH})$ and $11.68(\mathrm{~s}, \mathrm{OH})$.
(d) Thermal self-condensation. A mixture of compound 18 e $(0.5 \mathrm{~g})$ in xylene ($24 \mathrm{~cm}^{3}$) was heated at $150^{\circ} \mathrm{C}(4 \mathrm{~h})$. The mixture was then poured into light petroleum (b.p. $40-60^{\circ} \mathrm{C}$) ($250 \mathrm{~cm}^{3}$) and the resulting precipitate was collected, washed with a little $\mathrm{Et}_{2} \mathrm{O}$ and purified by MPLC (9:5:1, ethyl acetate-chloroform-methanol as eluent). The major fraction was collected and identified as 5 -(5 -amino-1,2-dimethylimidazol4 -ylmethyleneamino)-4-(2,2-diethoxycarbonylvinyl)-1,2-dimethylimidazole 22 e ($220 \mathrm{mg}, 56 \%$), an orange crystalline solid, m.p. 243-244 ${ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}} 1.23\left(\mathrm{t}, J 8, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.37\left(\mathrm{t}, J 8, \mathrm{OCH}_{2}-\right.$ CH_{3}), $2.15\left(\mathrm{~s}, \mathrm{CCH}_{3}\right), 2.33\left(\mathrm{~s}, \mathrm{CCH}_{3}\right), 3.22\left(\mathrm{~s}, \mathrm{NCH}_{3}\right), 3.30$ $\left(\mathrm{s}, \mathrm{NCH}_{3}\right), 4.15\left(\mathrm{q}, \mathrm{J}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.35\left(\mathrm{q}, \mathrm{J} 8, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $5.70\left(\mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right), 7.27(\mathrm{~s}, \mathrm{CH})$ and $8.13(\mathrm{~s}, \mathrm{CH}) ; m / z 402\left(M^{+}\right)$.

1-(2-Acetoxyethyl)-5-diethoxycarbonylvinylamino-2-methylimidazole 17 n .-A mixture of compound $17 \mathrm{l}(160 \mathrm{~g})$, pyridine $\left(640 \mathrm{~cm}^{3}\right)$ and acetic anhydride (58 g) was heated at $100^{\circ} \mathrm{C}(2 \mathrm{~h})$. Evaporation gave a residue which was diluted with toluene (250 cm^{3}) and re-evaporated. The residue was then dissolved in $\mathrm{CHCl}_{3}\left(300 \mathrm{~cm}^{3}\right)$, washed with water ($2 \times 400 \mathrm{~cm}^{3}$), dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The product was dissolved in ether ($500 \mathrm{~cm}^{3}$) and light petroleum (b.p. $\left.40-60^{\circ} \mathrm{C}\right)\left(250 \mathrm{~cm}^{3}\right)$ was added whereupon gentle agitation resulted in crystallisation of the product 17 n as a buff solid ($144 \mathrm{~g}, 79 \%$) which was collected and used without further purification. An analytical sample was obtained by recrystallisation from ethyl acetate giving 1-(2-acetoxyethyl)-5-diethoxycarbonylvinylamino-2-methylimidazole 17 n as colourless crystals, m.p. $87-90^{\circ} \mathrm{C}$ (Found: C, $54.4 ; \mathrm{H}, 6.8$; $\mathrm{N}, 11.8 . \mathrm{C}_{16} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{6}$ requires $\mathrm{C}, 54.4 ; \mathrm{H}, 6.52 ; \mathrm{N}, 11.9 \%$); $\nu_{\text {max }} / \mathrm{cm}^{-1} 1240,1380,1600,1660,1715,1750,2990$ and $3240 ; \delta_{\mathrm{H}}$ $1.28\left(\mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.35\left(\mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.1(\mathrm{~s}$, $\left.\mathrm{COCH}_{3}\right), 2.38\left(\mathrm{~s}, \mathrm{CCH}_{3}\right), 4.0-4.5\left(\mathrm{~m}, 2 \times \mathrm{OCH}_{2} \mathrm{CH}_{3}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OCOCH}_{3}\right), 6.75(\mathrm{~s}, \mathrm{CH}), 7.95(\mathrm{~d}, \mathrm{~J} 13, \mathrm{HNCH})$ and 10.50 (br d, $J 13, H \mathrm{NCH}$).

Ethyl 7-Chloroimidazo[4,5-b] pyridine-6-carboxylates 31.-A suspension of compound $\mathbf{1 7 n}(133.8 \mathrm{~g})$ in phosphoryl chloride $\left(700 \mathrm{~cm}^{3}\right)$ was heated under reflux $(7 \mathrm{~h})$. The dark solution was then evaporated and the residual oil poured into ice $\left(2 \mathrm{dm}^{3}\right)$ with vigorous stirring. The resulting mixture was extracted with $\mathrm{CHCl}_{3}\left(3 \times 400 \mathrm{~cm}^{3}\right)$ and the combined extracts were washed with water $\left(2 \times 400 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated.

* For details of the deposition scheme see Instructions for Authors, J. Chem. Soc., Perkin Trans. 1, 1992, issue 1.

Recrystallisation of the residue from ether gave ethyl 3-(2-acetoxyethyl)-7-chloro-2-methylimidazo[4,5-b] pyridine-6-carboxylate $31 \mathrm{n}(108 \mathrm{~g}, 87 \%)$ as a buff solid, m.p. $103-105^{\circ} \mathrm{C}$ (Found: C, 51.1; H, 4.9; $\mathrm{Cl}, 10.9 ; \mathrm{N}, 12.7 . \mathrm{C}_{14} \mathrm{H}_{16} \mathrm{ClN}_{3} \mathrm{O}_{4}$ requires C, $51.6 ; \mathrm{H}, 4.9 ; \mathrm{Cl}, 10.9 ; \mathrm{N}, 12.9 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1230$, $1260,1300,1345,1365,1425,1465,1595,1715,1740$ and 2990 ; $\delta_{\mathrm{H}} 1.42\left(\mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.98\left(\mathrm{~s}, \mathrm{COCH}_{3}\right), 2.68\left(\mathrm{~s}, \mathrm{CCH}_{3}\right)$, 4.2-4.6 ($\mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$ and $\mathrm{CH}_{2} \mathrm{CH}_{2}$) and $8.75(\mathrm{~s}, \mathrm{CH})$.

Similarly, the derivatives 31e, 31f, 31m and 31p were obtained from compounds $17 \mathrm{e}, 17 \mathrm{f}, 17 \mathrm{~m}$ and 171 respectively and their analytical and spectral data has been deposited as a Supplementary Publication [SUP No: 56895 (pp. 11)].*

Reactions of Ethyl 7-Chloroimidazo[4,5-b] pyridine-6-carboxylates 31.-(a) Catalytic hydrogenation. A mixture of compound $31 \mathrm{n}(5.4 \mathrm{~g}), 5 \% \mathrm{Pd} / \mathrm{C}(1 \mathrm{~g})$, triethylamine ($2.5 \mathrm{~cm}^{3}$) and ethanol $\left(100 \mathrm{~cm}^{3}\right)$ was shaken under an atmosphere of hydrogen until 1 mol equiv. of hydrogen had been consumed. The catalyst was then filtered off and the filtrate evaporated to give a residue which was purified by MPLC (ethyl acetate as eluent). The major component ($R_{\mathrm{f}} 0.3$) was collected and the residue after evaporation triturated with light petroleum (b.p. $40-60^{\circ} \mathrm{C}$) to give ethyl 3-(2-acetoxyethyl)-2-methylimidazo[4,5-b] pyridine6 -carboxylate $33 \mathrm{n}(2.9 \mathrm{~g}, 60 \%)$ as colourless crystals, m.p. 70 $73^{\circ} \mathrm{C}$ (Found: C, 58.1; $\mathrm{H}, 5.95 ; \mathrm{N}, 14.2 . \mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires C, $57.7 ; \mathrm{H}, 5.84 ; \mathrm{N}, 14.4 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1240,1305,1380,1425$, 1613, 1720, 1750 and 2990; $\delta_{\mathrm{H}} 1.40\left(\mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right.$), 2.00 (s , COCH_{3}), $2.68\left(\mathrm{~s}, \mathrm{CCH}_{3}\right), 4.40\left(\mathrm{q}, \mathrm{J} 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.48(\mathrm{br} \mathrm{s}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 8.48(\mathrm{~d}, J 2,7-\mathrm{H})$ and $8.90(\mathrm{~d}, \mathrm{~J} 2,5-\mathrm{H})$.

Similarly, the following derivatives were prepared from compounds 31e and 31f respectively. Ethyl 2,3-dimethyl-imidazo[4,5-b] pyridine-6-carboxylate 33 e ($3.9 \mathrm{~g}, 58 \%$), as buff crystals, m.p. $93-95^{\circ} \mathrm{C}$ (Found: C, 60.3; H, 6.0; N, 19.2. $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires C, $60.3 ; \mathrm{H}, 5.98 ; \mathrm{N}, 19.2 \%$); $v_{\text {max }} / \mathrm{cm}^{-1}$ 1245, 1290, 1308, 1355, 1370, 1410, 1469, 1611, 1705 and 2980; δ_{H} $1.4\left(\mathrm{t}, \mathrm{J}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.65\left(\mathrm{~s}, \mathrm{CCH}_{3}\right), 3.80\left(\mathrm{~s}, \mathrm{NCH}_{3}\right), 4.35(\mathrm{q}$, $\left.J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 8.40(\mathrm{~d}, J 2,7-\mathrm{H})$ and $8.88(\mathrm{~d}, J 2,5-\mathrm{H})$; ethyl 2-isopropyl-3-methylimidazo[4,5-b] pyridine-6-carboxylate 33 f ($6.8 \mathrm{~g}, 73 \%$), a waxy yellow solid, m.p. $40-43^{\circ} \mathrm{C}$ (Found: C, 62.8 ; $\mathrm{H}, 7.1 ; \mathrm{N}, 16.7 . \mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires $\mathrm{C}, 63.1 ; \mathrm{H}, 6.9$; N , $17.0 \%) ; \delta_{\mathrm{H}} 1.40\left(\mathrm{t}, \mathrm{J} 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.50\left[\mathrm{~d}, \mathrm{~J} 7, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 3.28$ [sept, $J 7, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$], $3.7\left(\mathrm{~s}, \mathrm{NCH}_{3}\right), 4.38\left(\mathrm{q}, \mathrm{J} 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $8.52(\mathrm{~d}, J 2,7-\mathrm{H})$ and $8.92(\mathrm{~d}, J 2,5-\mathrm{H})$.
(b) With amines and hydrazines. A solution of compound 31e $(3.0 \mathrm{~g})$ and butylamine (2.6 g) in ethanol $\left(45 \mathrm{~cm}^{3}\right)$ was heated under reflux (6 h). Evaporation gave a residue which was extracted with light petroleum (b.p. $\left.40-60^{\circ} \mathrm{C}\right)\left(3 \times 100 \mathrm{~cm}^{3}\right)$. The combined extracts were evaporated and purified by MPLC (ethyl acetate as eluent). The product ($R_{\mathrm{f}} 0.5$) was collected and identified as ethyl 7-butylamino-2,3-dimethylimidazo[4,5-b]-pyridine-6-carboxylate $34 \mathrm{e}(2.5 \mathrm{~g}, 72 \%$), a colourless solid, m.p. $84-85^{\circ} \mathrm{C}$ (Found: C, $62.1 ; \mathrm{H}, 7.6 ; \mathrm{N}, 19.3 . \mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires C, 62.0; H, 7.64; $\mathrm{N}, 19.3 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1260,1276,1309,1530$, 1590, 1670, 2940, 2960 and $3300 ; \delta_{\mathrm{H}} 0.98\left[\mathrm{t}, J 7,\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}\right]$, $1.32\left(\mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.5-1.8(\mathrm{~m}, 4$-aliphatic H$), 2.50(\mathrm{~s}$, CCH_{3}), $3.68\left(\mathrm{~s}, \mathrm{NCH}_{3}\right), 3.95-4.30\left(\mathrm{~m}, \mathrm{HNCH}_{2} \mathrm{CH}_{2}\right), 4.30(\mathrm{q}$, $J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), 8.56 (br s, NH) and 8.68 (s, 5-H). Similarly, compounds 34b-h and 34I-s were prepared (see Supplementary Publication [SUP No: 56895 (pp. 11)]\}.*
(c) With alkoxides. A 60% suspension of sodium hydride in oil $(0.96 \mathrm{~g})$ was added to a solution of ethanol $\left(1.5 \mathrm{~cm}^{3}\right)$ in DMF ($50 \mathrm{~cm}^{3}$) with stirring and under an argon atmosphere. Compound $31 \mathrm{e}(5.1 \mathrm{~g})$ was then added and the solution stirred at ambient temperature (3 h). Evaporation gave a residue which dissolved in $1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$ solution ($50 \mathrm{~cm}^{3}$) and was extracted with $\mathrm{CHCl}_{3}\left(2 \times 50 \mathrm{~cm}^{3}\right)$. The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give a product which was purified by MPLC ($49: 1, \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ as eluent). The
major fraction ($R_{\mathrm{f}} 0.5$) was collected and identified as ethyl 2,3-dimethyl-7-ethoxyimidazo[4,5-b] pyridine-6-carboxylate 34 j (2.4 g, 46%), a buff solid, m.p. $83-88^{\circ} \mathrm{C}$ (Found: C, 59.0; H, 6.6; N, 15.8. $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires $\mathrm{C}, 59.3 ; \mathrm{H}, 6.51 ; \mathrm{N}, 15.9 \%$); $v_{\max } / \mathrm{cm}^{-1} 1265,1295,1350,1600,1720,2940$ and $2980 ; \delta_{\mathrm{H}} 1.28(\mathrm{t}$, $\left.J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.33\left(\mathrm{t}, \mathrm{J} 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.46\left(\mathrm{~s}, \mathrm{CCH}_{3}\right), 3.63(\mathrm{~s}$, $\left.\mathrm{NCH}_{3}\right), 4.19\left(\mathrm{q}, \mathrm{J} 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.90\left(\mathrm{q}, \mathrm{J} 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$ and 8.33 (s, $5-\mathrm{H})$. Compound 34 k was similarly prepared \{Supplementary publication [SUP No: 56895 (pp. 11)]\}.*
(d) With toluene- α-thiol. Compound 31e (8.7 g) was added to a stirred suspension of potassium carbonate (11.0 g) and toluene- α-thiol (4.46 g) in DMF ($85 \mathrm{~cm}^{3}$) at ambient temperature. After being stirred (18 h) the mixture was filtered and the filtrate evaporated. The residue was subjected to MPLC (CHCl_{3} as eluent) and the major component ($R_{\mathrm{f}} 0.2$) collected, recrystallised from ethanol and identified as ethyl 7-benzylthio-2,3-dimethylimidazo[4,5-b] pyridine-6-carboxylate 34i (5.6 g , 48%), as colourless prisms, m.p. $118-119{ }^{\circ} \mathrm{C}$ (Found: C, $63.1 ; \mathrm{H}$, $5.55 ; \mathrm{N}, 12.2 ; \mathrm{S}, 9.5 . \mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$ requires $\mathrm{C}, 63.3 ; \mathrm{H}, 5.61 ; \mathrm{N}$, 12.3; S, 9.4\%); $v_{\text {max }} / \mathrm{cm}^{-1} 1275,1300,1330,1570,1700,2940$ and $2980 ; \delta_{\mathrm{H}} 1.38\left(\mathrm{t}, \mathrm{J} 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.55\left(\mathrm{~s}, \mathrm{CCH}_{3}\right), 3.72\left(\mathrm{~s}, \mathrm{NCH}_{3}\right)$, $4.37\left(\mathrm{q}, \mathrm{J} 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 5.1\left(\mathrm{~s}, \mathrm{SCH}_{2}\right), 7.1-7.5(\mathrm{~m}, 5 \mathrm{ArH})$ and 8.27 (s, 5-H).
(e) Hydrolytic alkylation. A mixture of compound $31 \mathrm{~m}(2.6 \mathrm{~g})$ and $10 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}\left(15 \mathrm{~cm}^{3}\right)$ in ethoxyethanol $\left(100 \mathrm{~cm}^{3}\right)$ was heated under reflux (3 h). Ethyl iodide ($6 \mathrm{~cm}^{3}$) was then added and heating continued (1 h). After cooling and evaporation of the mixture, the residue was dissolved in water ($100 \mathrm{~cm}^{3}$) and acidified to $\mathrm{pH} 5(\mathrm{AcOH})$. The aqueous mixture was extracted with $\mathrm{CHCl}_{3}\left(2 \times 50 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The residue was dissolved in $\mathrm{EtOH}\left(25 \mathrm{~cm}^{3}\right), 2 \mathrm{~mol}$ $\mathrm{dm}^{-3} \mathrm{NaOH}\left(10 \mathrm{~cm}^{3}\right)$ was added and the mixture heated under reflux (30 min). After cooling, the mixture was acidified to pH 5 (AcOH) and diluted with water $\left(100 \mathrm{~cm}^{3}\right)$ to give a solid which was collected, recrystallised from methanol and identified as 4-ethyl-3-methyl-7-oxo-2-(2-phenethyl)imidazo[4,5-b] pyridine-6carboxylic acid $32 \mathrm{~m}(0.55 \mathrm{~g}, 22 \%$), colourless crystals, m.p. $160-$ $162{ }^{\circ} \mathrm{C}$ (decomp.) (Found: C, 66.3; H, 5.9; N, 12.8. $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires $\mathrm{C}, 66.5 ; \mathrm{H}, 5.85 ; \mathrm{N}, 12.9 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1250,1290,1360$, $1490,1580,1597,1707$ and $2300-3100 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}+\mathrm{D}_{2} \mathrm{O}\right) 1.55$ (t, J 7, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), $3.04\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.50\left(\mathrm{~s}, \mathrm{NCH}_{3}\right), 5.20(\mathrm{q}$, $J 7, \mathrm{CH}_{2} \mathrm{CH}_{3}$), $7.15\left(\mathrm{br} \mathrm{s}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$ and $8.85(\mathrm{~s}, 5-\mathrm{H})$. The following compound was prepared similarly from the derivative 31e: 4-ethyl-7-oxo-2,3-dimethylimidazo[4,5-b] pyridine-6-carboxylic acid 32e ($0.5 \mathrm{~g}, 25 \%$), as a buff solid, m.p. $230^{\circ} \mathrm{C}$ (decomp.) (Found: C, 55.8; H, 5.55; N, 18.0. $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires C, 56.2; $\mathrm{H}, 5.57 ; \mathrm{N}, 17.9 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1250,1290,1345,1595,1670,1700$ and $2400-3600 ; \delta_{\mathrm{H}} 1.37\left(\mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.55\left(\mathrm{~s}, \mathrm{CCH}_{3}\right)$, $3.75\left(\mathrm{~s}, \mathrm{NCH}_{3}\right), 5.0\left(\mathrm{q}, \mathrm{J} 7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 8.5(\mathrm{~s}, 5-\mathrm{H})$ and 11.5 (vbr s, $\mathrm{CO}_{2} \mathrm{H}$); m/z $235\left(M^{+}\right)$.

Saponification of Ethyl Imidazo[4,5-b] pyridine-6-carboxylates 34.-A solution of compound $34 \mathrm{i}(2.2 \mathrm{~g})$ in a mixture of ethanol ($50 \mathrm{~cm}^{3}$) and $2 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{NaOH}\left(7 \mathrm{~cm}^{3}\right)$ was allowed to stand at room temperature (3 h). Evaporation gave a residue which was dissolved in water ($20 \mathrm{~cm}^{3}$) and acidified (glacial acetic acid). The resulting solid was collected and identified as 7-benzylthio-2,3-dimethylimidazo[4,5-b] pyridine-6-carboxylic acid $35 \mathrm{i}\left(1.6 \mathrm{~g}, 84 \%\right.$), a colourless solid, m.p. $262-263{ }^{\circ} \mathrm{C}$ (decomp.) (Found: C, 61.0; H, 4.6; N, 13.4; S, 10.4. $\mathrm{C}_{16}{ }^{-}$ $\mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$ requires $\mathrm{C}, 61.3 ; \mathrm{H}, 4.82 ; \mathrm{N}, 13.4 ; \mathrm{S}, 10.2 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1270,1340,1570,1685$ and $2300-3100$ br. Compounds $\mathbf{3 5 b}-\mathbf{e}, \mathbf{k}-\mathbf{n}$ were similarly prepared \{see Supplementary publication [SUP No: 56895 (pp. 11)]\}.*

* For details of the deposition scheme see Instructions for Authors, J. Chem. Soc., Perkin Trans. 1, 1992, issue 1.

Decarboxylation of Imidazo[4,5-b] pyridine-6-carboxylic Acids 35.-A mixture of compound 351 (7.2 g) in Dowtherm ${ }^{\text {® }} 29$ ($120 \mathrm{~cm}^{3}$) was boiled (10 min). After cooling the mixture was extracted with $2 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{HCl}\left(2 \times 100 \mathrm{~cm}^{3}\right)$ and the combined extracts were basified to $\mathrm{pH} 11\left(2 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}\right)$ with ice cooling. The resulting solid was collected, dissolved in $\mathrm{CHCl}_{3}\left(250 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to ca . $10 \mathrm{~cm}^{3}$. Trituration with light petroleum (b.p. $60-80^{\circ} \mathrm{C}$) gave a solid product which was identified as 7-butylamino-3-(2-hydroxyethyl)-2-methylimidazo[4,5-b] pyridine $361(4.4 \mathrm{~g}, 71 \%)$, a colourless solid, m.p. $98-100^{\circ} \mathrm{C}$ (Found: C, 62.5; H, 8.3; N, 22.7. $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}$ requires $\mathrm{C}, 62.9 ; \mathrm{H}, 8.06 ; \mathrm{N}, 22.6 \%$); $v_{\text {max }} / \mathrm{cm}^{-1}$ $1290,1350,1390,1425,1470,1510,1620,2865,2920,2960,3150$ and 3340; $\delta_{\mathrm{H}} 0.8-1.1\left(\mathrm{~m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.2-1.8\left(\mathrm{~m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $2.47\left(\mathrm{~s}, \mathrm{CCH}_{3}\right), 3.29\left(\mathrm{q}, \mathrm{J} 6, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.8-4.3\left(\mathrm{~m}, \mathrm{HNCH}_{2}\right.$ and $\mathrm{CH}_{2} \mathrm{CH}_{2}$), 5.23 (vbr s, OH), $6.20(\mathrm{~d}, J 6,6-\mathrm{H})$ and $7.80(\mathrm{~d}, J 6$, $5-\mathrm{H}$). Compounds $36 \mathrm{~b}-\mathrm{e}$, n were similarly prepared $\{$ Supplementary publication [SUP No: 56895 (pp. 11)]\}.*

Preparation of 1,2-Dihydroimidazo[4,5-b] pyrazolo[3,4-d]-pyridin- $3(6 \mathrm{H}$)-ones 37 .-A mixture of compound $34 \mathrm{~g}(3.0 \mathrm{~g})$, ethanol ($100 \mathrm{~cm}^{3}$) and $2 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}\left(50 \mathrm{~cm}^{3}\right)$ was heated under reflux (10 min). The solution was cooled, acidified to pH 5 (acetic acid) and the resulting solid collected. The product was recrystallised from acetic acid and identified as 1,2-dihydro-6,7-dimethylimidazo $[4,5-\mathrm{b}]$ pyrazolo $[3,4-\mathrm{d}]$ pyridin- $3(6 \mathrm{H})$-one $37 \mathrm{t}\left(1.7 \mathrm{~g}, 65 \%\right.$), colourless crystals, m.p. $>360^{\circ} \mathrm{C}$ (Found: C, 53.0; H, 4.2; $\mathrm{N}, 34.4 . \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}$ requires C, 53.2; $\mathrm{H}, 4.46$; N , 34.5%); $v_{\max } / \mathrm{cm}^{-1} 1225,1405,1442,1520,1625$ and $2300-3200$; $\delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$-DMSO + TFA $) 3.00\left(\mathrm{~s}, \mathrm{CCH}_{3}\right), 4.15\left(\mathrm{~s}, \mathrm{NCH}_{3}\right)$ and $9.05(\mathrm{~s}, 4-\mathrm{H}) ; \mathrm{m} / \mathrm{z} 203\left(M^{+}\right)$. The following compounds were similarly prepared from the derivatives 34 h and 340 respectively: 1,2-dihydro-6,7-dimethyl-2-phenylimidazo[4,5-b]pyrazolo $[3,4-\mathrm{d}]$ pyridin $3(6 \mathrm{H})$-one $37 \mathrm{u}(4.1 \mathrm{~g}, 75 \%$), colourless crystals, m.p. 299-301 ${ }^{\circ} \mathrm{C}$ (Found: C, 64.7; H, 4.6; N, 25.4. $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}$ requires C, $64.5 ; \mathrm{H}, 4.69 ; \mathrm{N}, 25.1 \%$); $v_{\text {max }} / \mathrm{cm}^{-1}$ 1315, 1368, 1382, 1500, 1585, 1645, 1670 and 2400-2900; $\delta_{\mathrm{H}}\left({ }^{2}{ }^{2} \mathrm{H}_{6}\right]$-DMSO $\left.+\mathrm{D}_{2} \mathrm{O}\right) 2.58\left(\mathrm{~s}, \mathrm{CCH}_{3}\right), 3.78\left(\mathrm{~s}, \mathrm{NCH}_{3}\right), 7.0-$ $8.0(\mathrm{~m}, 5 \mathrm{ArH})$ and $8.50(\mathrm{~s}, 4-\mathrm{H}) ; 1,2$-dihydro-6-(2-hydroxyethyl)-7-methyl-2-phenylimidazo[4,5-b] pyrazolo[3,4-d] pyridin-3(6H)one $37 \mathrm{v}\left(2.15 \mathrm{~g}, 62 \%\right.$), colourless crystals, m.p. $262-264{ }^{\circ} \mathrm{C}$ (Found: C, 61.9; H, 4.85; N, 22.8; $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{2}$ requires C, 62.1; $\mathrm{H}, 4.85 ; \mathrm{N}, 22.7 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1312,1380,1498,1637,1687$ and 2700-3200; $\delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$-DMSO $\left.+\mathrm{D}_{2} \mathrm{O}\right) 2.60\left(\mathrm{~s}, \mathrm{CCH}_{3}\right), 3.6-3.9$ ($\mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}$), 4.1-4.45 (m, $\mathrm{CH}_{2} \mathrm{CH}_{2}$), 6.9-7.6 (m, 3 ArH), 7.7-8.0 ($\mathrm{m}, 2 \mathrm{ArH}$) and $8.50(\mathrm{~s}, 4-\mathrm{H})$.

Preparation of 5-Amino-6-cyanoimidazo[4,5-b] pyridines 43. -A hot solution of compound $42 \mathrm{e}(10.0 \mathrm{~g})$ in $\mathrm{MeOH}\left(200 \mathrm{~cm}^{3}\right)$ was added to a hot $\left(90^{\circ} \mathrm{C}\right.$) solution of 50% (w/v) $\mathrm{NaOH}(15$ cm^{3}) in water ($450 \mathrm{~cm}^{3}$) with stirring. The mixture was then chilled and the solid product collected, recrystallised from DMF and identified as 5-amino-6-cyano-2,3-dimethylimidazo-[4,5-b] pyridine $43 \mathrm{e}(6.4 \mathrm{~g}, 64 \%)$, colourless plates, m.p. $320^{\circ} \mathrm{C}$ (Found: C, 57.7; H, 4.75; N, 37.4. $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~N}_{5}$ requires C, 57.7; H, $4.85 ; \mathrm{N}, 37.4 \%$); $v_{\max } / \mathrm{cm}^{-1} 1285,1305,1355,1405,1425,1500$, 1580, 1620, 2210, 3140, 3320 and 3420; $\delta_{\mathrm{H}} 2.45\left(\mathrm{~s}, \mathrm{CCH}_{3}\right), 3.57$ $\left(\mathrm{s}, \mathrm{NCH}_{3}\right), 6.55\left(\mathrm{brs}, \mathrm{NH}_{2}\right)$ and $8.05(\mathrm{~s}, 7-\mathrm{H}) ; m / z 187\left(M^{+}\right)$.
The following compounds were similarly prepared from compounds 421 and 42 f respectively; 5-amino-6-cyano-3-(2-hydroxyethyl)-2-methylimidazo[4,5-b] pyridine $431(3.0 \mathrm{~g}, 65 \%)$, colourless plates, m.p. $245-247^{\circ} \mathrm{C}$ (Found: C, 55.6; H, 5.2; N, 32.7. $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{O}$ requires $\left.\mathrm{C}, 55.3 ; \mathrm{H}, 5.07 ; \mathrm{N}, 32.3 \%\right) ; v_{\text {max }} / \mathrm{cm}^{-1}$ $1288,1430,1496,1576,1623,1650,2210,3180,3250,3360$ and 3430; $\delta_{\mathrm{H}} 2.50\left(\mathrm{~s}, \mathrm{CCH}_{3}\right), 3.67\left(\mathrm{q}, J 6, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 4.08(\mathrm{t}$, $J 6, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$), 4.95 (br t, J 6, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$), 6.53 (br s, NH_{2}) and 8.00 (s, 7-H); 5-amino-6-cyano-2-isopropyl-3-methylimidazo $[4,5-\mathrm{b}]$ pyridine $\mathbf{4 3 f}(2.4 \mathrm{~g}, 77 \%)$, colourless prisms, m.p.

254-255 ${ }^{\circ} \mathrm{C}$ (Found: C, 61.3; H, 5.9; N, 32.9. $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{5}$ requires C, 61.4; H, 6.09; N, 32.5\%); $v_{\text {max }} / \mathrm{cm}^{-1} 1280,1420,1450,1500$, $1580,1620,1645,2210,2980,3210,3300$ and $3340 ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$ DMSO) $1.29\left[\mathrm{~d}, \mathrm{~J} 7, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 3.22\left[\right.$ sept, $\left.J 7, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right]$, 3.62 (s, NCH_{3}), 6.39 (br s, NH_{2}) and 8.02 (s, 7-H); m/z 215 ($M^{\cdot+}$).

Reactions of 5-Amino-6-cyano-2,3-dimethylimidazo[4,5-b]pyridine 43e.-(a) With $0.2 \mathrm{~mol} \mathrm{dm}^{-3}$ potassium hydroxide. A mixture of compound $43 \mathrm{e}(3.7 \mathrm{~g})$ and $0.2 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{KOH}$ solution ($690 \mathrm{~cm}^{3}$) was heated under reflux with vigorous stirring (40 min). The resulting solution was then chilled $\left(10^{\circ} \mathrm{C}\right)$ and the solid which separated was collected, washed with water and dried. Recrystallisation from DMF gave 5-amino-2,3-dimethylimidazo[4,5-b] pyridine-6-carboxamide 44 ($2.2 \mathrm{~g}, 52 \%$) as colourless crystals, m.p. $325-327^{\circ} \mathrm{C}$ (Found: C, 52.7 ; H, 5.5; $\mathrm{N}, 34.2 . \mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{O}$ requires $\mathrm{C}, 52.7 ; \mathrm{H}, 5.40 ; \mathrm{N}, 34.1 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1270,1354,1402,1550,1580,1625,1670,3180,3330$ and 3490; $\delta_{\mathrm{H}} 2.45\left(\mathrm{~s}, \mathrm{CCH}_{3}\right), 3.57\left(\mathrm{~s}, \mathrm{NCH}_{3}\right), 7.10\left(\mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right)$, 7.36 ($\mathrm{vbr} \mathrm{s}, \mathrm{CONH}_{2}$) and 8.18 (s, 7-H).
(b) With $5 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide. A suspension of compound $43 \mathrm{e}(3.7 \mathrm{~g})$ in $5 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$ solution $\left(200 \mathrm{~cm}^{3}\right)$ was stirred and heated under reflux (5 h). The solution was then chilled $\left(10^{\circ} \mathrm{C}\right)$ and the solid product collected and dissolved in water ($150 \mathrm{~cm}^{3}$). This solution was adjusted to pH 5 (glacial acetic acid:dropwise with cooling) and the solid product collected, recrystallised from DMF and identified as 5-amino-2,3-dimethylimidazo[4,5-b] pyridine-6-carboxylic acid 45 (2.6 g , 64%), a colourless solid, m.p. $280^{\circ} \mathrm{C}$ (decomp.) (Found: C, 52.3; $\mathrm{H}, 4.7 ; \mathrm{N}, 27.3 . \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires $\mathrm{C}, 52.4 ; \mathrm{H}, 4.9 ; \mathrm{N}, 27.2 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1200,1390,1420,1610,1675,2300-2600,3295$ and $3410 ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$-DMSO $\left.+\mathrm{D}_{2} \mathrm{O}\right) 2.45\left(\mathrm{~s}, \mathrm{CCH}_{3}\right), 3.57\left(\mathrm{~s}, \mathrm{NCH}_{3}\right)$ and $8.15(\mathrm{~s}, 7-\mathrm{H})$.
(c) With 90% formic acid. A suspension of compound 43 e (1.9 g) in 90% formic acid $\left(50 \mathrm{~cm}^{3}\right)$ was heated at $100^{\circ} \mathrm{C}(24 \mathrm{~h})$ and then cooled and diluted with water ($100 \mathrm{~cm}^{3}$). This aqueous solution was adjusted to pH 3 by adding 50% (w/v) NaOH whilst maintaining the temperature below $30^{\circ} \mathrm{C}$. The solid product was collected and washed with water followed by EtOH . After drying, the product was identified as 3,5 -dihydro-2,3-dimethylimidazo $\left[4^{\prime}, 5^{\prime}: 5,6\right]$ pyrido[2,3-d] pyrimidin-6-one 52 ($1.8 \mathrm{~g}, 82 \%$), a yellow solid, m.p. $372^{\circ} \mathrm{C}$ (decomp.) (Found: C, 55.4; $\mathrm{H}, 4.1 ; \mathrm{N}, 32.3 . \mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}$ requires $\mathrm{C}, 55.8 ; \mathrm{H}, 4.21 ; \mathrm{N}$, 32.5%; $v_{\max } / \mathrm{cm}^{-1} 1270,1370,1390,1430,1567,1610,1685$ and 2500-2950; $\delta_{\mathrm{H}}\left(\left[^{2} \mathrm{H}_{6}\right]\right.$-DMSO $\left.+\mathrm{D}_{2} \mathrm{O}\right) 3.12\left(\mathrm{~s}, \mathrm{CCH}_{3}\right), 4.30(\mathrm{~s}$, $\left.\mathrm{NCH}_{3}\right), 8.67(\mathrm{~s}, 8-\mathrm{H})$ and $9.02(\mathrm{~s}, 9-\mathrm{H})$.
(d) With nitrous acid. A solution of sodium nitrite $(4.5 \mathrm{~g})$ in water ($100 \mathrm{~cm}^{3}$) was added dropwise (20 min) to a stirred solution of compound $43 \mathrm{e}(1.9 \mathrm{~g})$ in $2 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}\left(180 \mathrm{~cm}^{3}\right)$ with the temperature being maintained in the range $20-25^{\circ} \mathrm{C}$. After further stirring (30 min) the mixture was chilled $\left(10^{\circ} \mathrm{C}\right)$ and treated with $50 \%(w / v) \mathrm{NaOH}$ until pH 3 was achieved. Saturated aqueous NaHCO_{3} was then added until the solution was mildly basic and the resulting solid was collected, recrystallised from DMF and identified as 6-cyano-4,5-dihydro-2,3-dimethylimidazo[4,5-b] pyridine-5-one 47 ($1.0 \mathrm{~g}, 52 \%$), tiny colourless plates, m.p. $>360^{\circ} \mathrm{C}$ (Found: C, 57.9; H, 4.3; N, 30.1. $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O}$ requires C, 57.4; H, 4.28; $\mathrm{N}, 29.8 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1275$, $1360,1390,1435,1455,1623,2235$ and $3100 ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]-\right.$ DMSO $\left.+\mathrm{D}_{2} \mathrm{O}\right) 2.50\left(\mathrm{~s}, \mathrm{CCH}_{3}\right), 3.65\left(\mathrm{~s}, \mathrm{NCH}_{3}\right)$ and $8.15(\mathrm{~s}$, 7-H).
(e) With triethyl orthoformate. A mixture of compound 43e $(5.0 \mathrm{~g})$, triethyl orthoformate ($100 \mathrm{~cm}^{3}$) and toluene- p-sulfonic acid hydrate (20 mg) was stirred and heated under reflux (3 h). Activated charcoal was then added and the hot mixture filtered. The filtrate was cooled and the solid which had separated was collected, washed with a little $\mathrm{Et}_{2} \mathrm{O}$ and after drying identified as ethyl N-(6-cyano-2,3-dimethylimidazo[4,5-b] pyridin-5-yl)form-
imidate $51(3.5 \mathrm{~g}, 53 \%)$, a colourless solid, m.p. $188-190^{\circ} \mathrm{C}$; $v_{\text {max }} / \mathrm{cm}^{-1} 1251,1270,1378,1410,1610,1630,2225,3000$ and $3040 ; \delta_{\mathrm{H}} 1.42\left(\mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.60\left(\mathrm{~s}, \mathrm{CCH}_{3}\right), 3.73\left(\mathrm{~s}, \mathrm{NCH}_{3}\right)$, 4.47 (q, J 7, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), $8.00(\mathrm{~s}, 7-\mathrm{H})$ and 8.43 (br s, CH).
(f) With 3,4-dichlorophenyl isocyanate. Compound $43 \mathrm{e}(3.7 \mathrm{~g}$) was added to a stirred solution of 3,4-dichlorophenyl isocyanate (3.8 g) in DMF ($150 \mathrm{~cm}^{3}$) at ambient temperature and the mixture was then heated at $100^{\circ} \mathrm{C}(6 \mathrm{~h})$. After 18 h at ambient temperature the solid product was collected, washed with ethanol, dried and identified as 7-(3,4-dichlorophenyl)-8-imino-2,3-dimethyl-3,5,7,8-tetrahydroimidazo[4',5':5,6] pyrido[2,3-d]-pyrimidine-6-one $48\left(2.2 \mathrm{~g}, 29 \%\right.$), a yellow solid, m.p. $>360^{\circ} \mathrm{C}$ (Found: C, 51.4; H, 3.2; $\mathrm{Cl}, 18.3 ; \mathrm{N}, 22.7 . \mathrm{C}_{16} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{~N}_{6} \mathrm{O}$ requires $\mathrm{C}, 51.2 ; \mathrm{H}, 3.22 ; \mathrm{Cl}, 18.9 ; \mathrm{N}, 22.4 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1225$, 1263, 1390, 1470, 1610, 1710, 2700-3200 and 3318; $\delta_{H}\left(\left[{ }^{2} \mathrm{H}\right]\right.$ TFA) 3.15 ($\mathrm{s}, \mathrm{CCH}_{3}$), $4.20\left(\mathrm{~s}, \mathrm{NCH}_{3}\right), 7.42$ (dd, $J 3$ and $8, \mathrm{ArH}$), $7.72(\mathrm{~d}, J 3, \mathrm{ArH}), 7.88(\mathrm{~d}, J 8, \mathrm{ArH})$ and $9.52(\mathrm{~s}, 9-\mathrm{H})$.
(g) With phenyl isothiocyanate. By a procedure analogous to that described in (f), compound 43 e (1.87 g) and phenyl isothiocyanate (1.35 g) gave 8-imino-2,3-dimethyl-7-phenyl-3,5,7,8-tetrahydroimidazo $\left[4^{\prime}, 5^{\prime}: 5,6\right]$ pyrido $[2,3-\mathrm{d}]$ pyrimidine-6thione $49(0.4 \mathrm{~g}, 11 \%)$, a yellow solid, m.p. 314-316 ${ }^{\circ} \mathrm{C}$ (decomp.) (Found: C, 59.4; H, 4.55; N, 26.2; S, 9.3. $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{6} \mathrm{~S}$ requires C, 59.6; H, 4.38; N, 26.7; S, 9.9\%); $v_{\text {max }} / \mathrm{cm}^{-1} 1307,1434,1451,1530$, 1580, 1630, 2800-3200 and 3300; $\delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$-DMSO) 2.60 (s, $\left.\mathrm{CCH}_{3}\right), 3.75\left(\mathrm{~s}, \mathrm{NCH}_{3}\right), 7.15-7.50(\mathrm{~m}, 3 \mathrm{ArH}), 7.8-8.0(\mathrm{~m}, 2$ ArH), $9.0(\mathrm{~s}, 9-\mathrm{H}), 9.85(\mathrm{vbr} \mathrm{s}, \mathrm{NH})$ and 12.55 ($\mathrm{vbr} \mathrm{s}, \mathrm{NH}$).
(h) With benzaldehyde. A stirred mixture of compound 43e $(9.4 \mathrm{~g}), \mathrm{KOH}(1.1 \mathrm{~g})$, benzaldehyde $(5.8 \mathrm{~g})$ and ethanol $\left(100 \mathrm{~cm}^{3}\right)$ was heated $\left(60^{\circ} \mathrm{C}\right)$ under an inert atmosphere (30 h). The solid product was collected from the hot solution, washed with ether, dried and identified as 2,3-dimethyl-6-phenyl-3,5,6,7-tetrahydroimidazo $\left[4^{\prime}, 5^{\prime}: 5,6\right]$ pyrido[2,3-d] pyrimidin-8-one $50(5.8 \mathrm{~g}, 39 \%$), a yellow solid, m.p. $380^{\circ} \mathrm{C}$ (decomp.) (Found: C, 65.0; H, 5.4; N, 23.4. $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}$ requires $\mathrm{C}, 65.5 ; \mathrm{H}, 5.15 ; \mathrm{N}, 23.9 \%$); $v_{\text {max }} / \mathrm{cm}^{-1}$ 1298, 1352, 1405, 1461, 1550, 1621, 1660, 2935, 3050 and 3180 ; $\delta_{\mathrm{H}}\left({ }^{2}{ }^{2} \mathrm{H}_{6}\right]$-DMSO) $2.46\left(\mathrm{~s}, \mathrm{CCH}_{3}\right), 3.58\left(\mathrm{~s}, \mathrm{NCH}_{3}\right), 5.74-5.81$ (m, 5-H), 7.24-7.50 (m, $\mathrm{C}_{6} \mathrm{H}_{5}$), 7.64 (br s, NH), $8.02(\mathrm{~s}, 9-\mathrm{H})$ and 8.29 (br s, NH); $m / z 294\left(M \mathrm{H}^{+}\right)$.
(i) With cyclohexane-1,3-dione. A mixture of compound 43e $(5.6 \mathrm{~g})$, cyclohexane-1,3-dione (6.7 g) and toluene- p-sulfonic acid (1.0 g) in toluene $\left(600 \mathrm{~cm}^{3}\right)$ was stirred and heated under reflux (18 h) with azeotropic removal of water. The hot mixture was then filtered and evaporated to give a residue which was recrystallised from ethanol and identified as 3-(6-cyano-2,3-dimethylimidazo[4,5-b] pyridin-5-ylamino)cyclohex-2-enone 56 $\left(4.6 \mathrm{~g}, 55 \%\right.$), yellow needles, m.p. 241-243 ${ }^{\circ} \mathrm{C}$ (Found: C, 64.1; $\mathrm{H}, 5.2 ; \mathrm{N}, 25.3 . \mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}$ requires $\mathrm{C}, 64.0 ; \mathrm{H}, 5.37 ; \mathrm{N}, 24.9 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1238,1282,1398,1414,1520,1580,1614,2218,2440$ and 3390; $\delta_{\mathrm{H}} 2.16$ (quint, $J \mathbf{6}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 2.48 (t, J 6, $\mathrm{CH}_{2} \mathrm{CH}_{2}$), 2.6-2.7 ($\mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}$ and CCH_{3}), $3.82\left(\mathrm{~s}, \mathrm{NCH}_{3}\right)$, 6.97 (br s, NH), 7.24 (s, CH) and 8.08 (s, 7-H).

Decarboxylation of 5-Amino-2,3-dimethylimidazo[4,5-b]pyri-dine-6-carboxylic Acid 45.-A mixture of compound 45 (29.0 g) and finely powdered copper bronze (4.0 g) in Dowtherm ${ }^{8}{ }^{29}$ (500 cm^{3}) was heated under reflux (1 h). The mixture was filtered whilst hot and allowed to cool. Light petroleum (b.p. $60-80^{\circ} \mathrm{C}$) ($1 \mathrm{dm}^{3}$) was then added and the solid product collected, recrystallised from acetonitrile and identified as 5-amino-2,3-dimethylimidazo[4,5-b] pyridine 46 ($18.3 \mathrm{~g}, 81 \%$), a buff solid, m.p. $212-214^{\circ} \mathrm{C}$ (Found: C, 59.2; H, 6.2; N, 34.9. $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4}$ requires $\mathrm{C}, 59.2 ; \mathrm{H}, 6.21 ; \mathrm{N}, 34.5 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1290,1367,1407$, 1592, 1640, 3210, 3327 and 3380; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}+\mathrm{D}_{2} \mathrm{O}\right) 2.52$ (s, $\left.\mathrm{CCH}_{3}\right), 3.65\left(\mathrm{~s}, \mathrm{NCH}_{3}\right), 6.35(\mathrm{~d}, J 8,6-\mathrm{H})$ and $7.65(\mathrm{~d}, J 8,7-\mathrm{H})$.

5-Diethoxycarbonylvinylamino-2,3-dimethylimidazo[4,5-b]pyridine 58.-A solution of compound 46 (4.9 g), diethyl
ethoxymethylenemalonate 3 (7.1 g) and toluene ($200 \mathrm{~cm}^{3}$) was heated under reflux (90 min). After cooling and evaporation of the mixture the residue was extracted with boiling light petroleum (b.p. $\left.80-100^{\circ} \mathrm{C}\right)\left(3 \times 250 \mathrm{~cm}^{3}\right)$ and the combined extracts were set aside at $0^{\circ} \mathrm{C}(3 \mathrm{~h})$. The crystalline product was collected, dried and identified as compound 58 ($8.4 \mathrm{~g}, 84 \%$), yellow crystals, m.p. $128-130^{\circ} \mathrm{C}$ (Found: C, 57.7; H, 6.2; N, 16.9 . $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4}$ requires C, 57.8; $\mathrm{H}, 6.07 ; \mathrm{N}, 16.9 \%$;); $v_{\text {max }} / \mathrm{cm}^{-1}$ $1230,1345,1400,1620,1642,1685$ and $2983 ; \delta_{\mathrm{H}} 1.37(\mathrm{t}, J 7$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.40\left(\mathrm{t}, \mathrm{J} 7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.62\left(\mathrm{CCH}_{3}\right), 3.82\left(\mathrm{~s}, \mathrm{NCH}_{3}\right)$, $4.30\left(\mathrm{q}, J 7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.35\left(\mathrm{q}, J 7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 6.73$ (d, $J 8,6-\mathrm{H}$), 7.86 (d, $J 8,7-\mathrm{H}), 9.25(\mathrm{~d}, J 13, \mathrm{NHCH})$ and $11.25(\mathrm{~d}, J 13$, NHCH).

Ethyl 2,3-Dimethyl-8-oxo-5,8-dihydroimidazo[4,5-b] [1,8]-naphthyridine-7-carboxylate 59.-A mixture of compound 58 (18.6 g) in Dowtherm ${ }^{\circledR 29}\left(300 \mathrm{~cm}^{3}\right.$) was heated under reflux (30 min). The solution was cooled and the solid product collected, washed with light petroleum (b.p. $60-80^{\circ} \mathrm{C}$) and dried to give compound 59 ($3.8 \mathrm{~g}, 24 \%$) as a yellow solid, m.p. $322^{\circ} \mathrm{C}$ (decomp.) (Found: C, 58.7; H, 4.9; N, 19.4. $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{3}$ requires $\mathrm{C}, 58.7 ; \mathrm{H}, 4.93 ; \mathrm{N}, 19.6 \%$); $v_{\max } / \mathrm{cm}^{-1} 1310,1400,1430$, $1525,1570,1620,1685,1720$ and $2700-3300 ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$ DMSO $\left.+\mathrm{D}_{2} \mathrm{O}\right) 1.27\left(\mathrm{t}, \mathrm{J} 7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.60\left(\mathrm{~s}, \mathrm{CCH}_{3}\right), 3.75$ (s, NCH_{3}), $4.22\left(\mathrm{q}, \mathrm{J}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 8.45(\mathrm{~s}, 6-$ or $9-\mathrm{H})$ and 8.53 (s , 9 - or $6-\mathrm{H}$).

Ethyl 8-Chloro-2,3-dimethylimidazo[4,5-b][1,8]naphthyri-dine-7-carboxylate 60.-A mixture of compound $59(1.0 \mathrm{~g})$ and phosphoryl chloride ($50 \mathrm{~cm}^{3}$) was heated under reflux (15 min). After evaporation of the mixture the residue was poured onto ice (400 g) with stirring. The aqueous mixture was then extracted with $\mathrm{CHCl}_{3}\left(2 \times 200 \mathrm{~cm}^{3}\right)$ and the combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The residue was triturated with ether ($20 \mathrm{~cm}^{3}$), collected and dried to give compound 60 ($260 \mathrm{mg}, 25 \%$) as a buff solid, m.p. $140-142^{\circ} \mathrm{C}$ (Found: C, 55.0 ; $\mathrm{H}, 4.1 ; \mathrm{Cl}, 11.5 ; \mathrm{N}, 18.4 . \mathrm{C}_{14} \mathrm{H}_{13} \mathrm{ClN}_{4} \mathrm{O}_{2}$ requires $\mathrm{C}, 55.2 ; \mathrm{H}$, $4.30 ; \mathrm{Cl}, 11.6 ; \mathrm{N}, 18.4 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1204,1227,1360,1385,1444$, 1597 and $1730 ; \delta_{\mathrm{H}} 1.48\left(\mathrm{t}, \mathrm{J} 7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.78\left(\mathrm{~s}, \mathrm{CCH}_{3}\right), 3.98(\mathrm{~s}$, NCH_{3}), $4.55\left(\mathrm{q}, J 7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 8.95(\mathrm{~s}, 6$ - or $9-\mathrm{H})$ and $9.40(\mathrm{~s}$, 9- or $6-\mathrm{H}$).

Ethyl 8-Butylamino-2,3-dimethylimidazo[4,5-b][1,8]naphthy-ridine-7-carboxylate 63 .-A solution of compound $60(2.4 \mathrm{~g})$ and butylamine (1.7 g) in ethanol ($100 \mathrm{~cm}^{3}$) was heated under reflux (2 h). After cooling and evaporation of the reaction mixture, the residue was triturated with water ($50 \mathrm{~cm}^{3}$) and collected and dried. Recrystallisation from acetonitrile gave compound $63(1.95 \mathrm{~g}, 72 \%)$ as a colourless solid, m.p. 183-184 ${ }^{\circ} \mathrm{C}$ (Found: C, 63.5; H, 6.95; N, 20.6. $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{2}$ requires $\mathrm{C}, 63.3$; $\mathrm{H}, 6.79 ; \mathrm{N}, 20.5 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1205,1265,1590,1600,1670,2880$ and 2960; $\delta_{\mathrm{H}} 0.98\left(\mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.44\left(\mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, 1.50-1.95 (m, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $2.70\left(\mathrm{~s}, \mathrm{CCH}_{3}\right), 3.7-4.0(\mathrm{~m}$, HNCH_{2} and NCH_{3}), 4.39 (q, J 7, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), 8.85 (s, 6- or $9-\mathrm{H}$), 9.24 (s, 6- or $9-\mathrm{H}$) and 9.5 (br s, HNCH_{2}).

Ethyl 5-Ethyl-2,3-dimethyl-8-oxoimidazo[4,5-b][1,8]naph-thyridine-7-carboxylate 61.-A mixture of compound $59(0.5 \mathrm{~g})$, potassium carbonate (0.5 g), ethyl iodide (0.55 g) and DMF (50 cm^{3}) was heated at $100{ }^{\circ} \mathrm{C}$ with stirring (90 min). After filtration and evaporation of the mixture, the residue was triturated with ethyl acetate ($10 \mathrm{~cm}^{3}$) and the solid product subjected to MPLC (19:1, $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ as eluent). The major component was collected and identified as compound $61(0.3 \mathrm{~g}, 55 \%)$, a yellow solid, m.p. $215-216^{\circ} \mathrm{C}$ (Found: C, 60.9; H, 5.7; N, 17.8. $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{3}$ requires C, $61.1 ; \mathrm{H}, 5.77 ; \mathrm{N}, 17.8 \%$); $v_{\text {max }} / \mathrm{cm}^{-1}$ $1228,1316,1376,1508,1625,1678,1720,2985$ and $3060 ; \delta_{\mathrm{H}} 1.43$ $\left(\mathrm{t}, \mathrm{J} 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.54\left(\mathrm{t}, \mathrm{J} 7, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 2.66\left(\mathrm{~s}, \mathrm{CCH}_{3}\right), 3.85$
($\mathrm{s}, \mathrm{NCH}_{3}$), $4.45\left(\mathrm{q}, J 7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.54\left(\mathrm{q}, \mathrm{J} 7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 8.55$ ($\mathrm{s}, 6-$ or $9-\mathrm{H}$) and 8.86 ($\mathrm{s}, 9-$ or $6-\mathrm{H}$).

5-Ethyl-2,3-dimethyl-8-oxoimidazo[4,5-b][1,8]naphthyridine-7-carboxylic Acid 62.-A suspension of compound $61(1.95 \mathrm{~g})$ in $2 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{KOH}\left(35 \mathrm{~cm}^{3}\right)$ was heated at $100^{\circ} \mathrm{C}(18 \mathrm{~h})$. The hot solution was then filtered, cooled and acidified to pH 5 (acetic acid). The mixture was chilled ($10^{\circ} \mathrm{C}$) and the solid product was collected, dried, and recrystallised from DMF to give compound $62(0.8 \mathrm{~g}, 45 \%)$ as buff needles, m.p. $338-340^{\circ} \mathrm{C}$ (decomp.) (Found: C, 59.0; H, 4.9; N, 19.5. $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{3}$ requires C, 58.7; $\mathrm{H}, 4.93 ; \mathrm{N}, 19.6 \%$); $v_{\max } / \mathrm{cm}^{-1} 1352,1380,1462,1562,1632,1720$ and 3060; $\delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$-DMSO) 1.54 (t, $\left.J 7, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 2.68$ (s, CCH_{3}), $3.85\left(\mathrm{~s}, \mathrm{NCH}_{3}\right), 4.75\left(\mathrm{q}, \mathrm{J} 7, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 8.71(\mathrm{~s}, 6$ or $9-\mathrm{H}), 9.02(\mathrm{~s}, 9-$ or $6-\mathrm{H})$ and 14.95 (vbr s, $\mathrm{CO}_{2} \mathrm{H}$).

3,7-Dihydro-2,3-dimethyl-6-phenylimidazo $\left[4^{\prime}, 5^{\prime}: 5,6\right]-$
pyrido $[2,3-\mathrm{d}]$ pyrimidin-8-one 53.-A suspension of compound $50(3.0 \mathrm{~g})$ in nitrobenzene ($150 \mathrm{~cm}^{3}$) was heated under reflux (5 h). The solid which formed upon cooling was collected, recrystallised from DMF and identified as compound $53(1.6 \mathrm{~g}$, 56%), yellow solid, m.p. $>360^{\circ} \mathrm{C}$ (Found: C, 65.8; H, 4.5; $\mathrm{N}, 23.8 . \mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}$ requires $\mathrm{C}, 66.0 ; \mathrm{H}, 4.50 ; \mathrm{N}, 24.0 \%$; $v_{\text {max }} / \mathrm{cm}^{-1} 1290,1375,1470,1560,1600,1620,1658$ and $2800-$ 3200; $\delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$-DMSO) $2.64\left(\mathrm{~s}, \mathrm{CCH}_{3}\right), 3.83\left(\mathrm{~s}, \mathrm{NCH}_{3}\right), 7.50-$ $7.64(\mathrm{~m}, 3 \mathrm{ArH}), 8.22-8.30(\mathrm{~m}, 2 \mathrm{ArH}), 8.54(\mathrm{~s}, 9-\mathrm{H})$ and 12.36 (brs, NH).

Preparation of 8 -Iminoimidazo[4',5':5,6-] pyrido[2,3-d]pyrimidines 54.-A mixture of compound 51 (5.0 g), ethanol ($300 \mathrm{~cm}^{3}$) and butylamine ($10 \mathrm{~cm}^{3}$) was allowed to stand at ambient temperature (18 h). The solid which separated was collected, recrystallised fom ethyl acetate and identified as 7-butyl-7,8-dihydro-2,3-dimethyl-8-iminoimidazo [4',5':5,6]-
pyrido $[2,3-\mathrm{d}]$ pyrimidine $54 \mathrm{~b}(3.0 \mathrm{~g}, 54 \%)$, buff crystals, m.p. 205-207 ${ }^{\circ} \mathrm{C}$ (Found: C, $62.3 ; \mathrm{H}, 6.9 ; \mathrm{N}, 31.3 . \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{6}$ requires C, 62.2; H, 6.67; N, 31.1\%); $v_{\text {max }} / \mathrm{cm}^{-1} 1380,1408,1600,2850$, 2910, 2940, 3040 and $3260 ; \delta_{\mathrm{H}} 0.98$ ($\mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.10-2.00 $\left(\mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.68\left(\mathrm{~s}, \mathrm{CCH}_{3}\right), 3.85\left(\mathrm{~s}, \mathrm{NCH}_{3}\right), 3.88(\mathrm{q}, J 7$, $\mathrm{NCH}_{2} \mathrm{CH}_{2}$), 7.85 (s, 6-H), 8.36 (s, 9-H) and 11.30 (vbr s, NH).

The derivatives 54c-h were similarly prepared from compound 51 and the appropriate amine. Their analytical and spectral details have been deposited as a Supplementary Publication [SUP No: 56895 (pp. 11)].*

Preparation of 8-Amino-2,3-dimethylimidazo $\left[4^{\prime}, 5^{\prime}: 5,6\right]$ py-rido[2,3-d] pyrimidines 55.-(a) A mixture of compound 51 (2.0 g) and saturated ethanolic ammonia solution ($400 \mathrm{~cm}^{3}$) was stirred at ambient temperature (18 h). The solution was then concentrated ($50 \mathrm{~cm}^{3}$) and the solid product collected, washed with a little ether and dried to give 8 -amino-2,3-dimethylimidazo $\left[4^{\prime}, 5^{\prime}: 5,6\right]$ pyrido $[2,3-\mathrm{d}]$ pyrimidine 55a ($1.6 \mathrm{~g}, 93 \%$) as a colourless solid, m.p. $>360^{\circ} \mathrm{C}$ (Found: C, 55.7; H, 4.9; N, 39.1. $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{6}$ requires C, $56.1 ; \mathrm{H}, 4.67 ; \mathrm{N}, 39.25 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1295$, $1330,1405,1510,1570,1584,1624,1673,2800-3250$ and 3310 ; $\delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$-DMSO +DCl$) 2.60\left(\mathrm{~s}, \mathrm{CCH}_{3}\right), 3.97\left(\mathrm{~s}, \mathrm{NCH}_{3}\right), 8.90$ ($\mathrm{s}, 6-\mathrm{H}$) and 9.75 ($\mathrm{s}, 9-\mathrm{H}$).
(b) A mixture of compound $54 \mathrm{~h}(1.4 \mathrm{~g}, 4 \mathrm{mmol})$, 1-(3-aminopropyl)-4-methylpiperazine ($1.26 \mathrm{~g}, 8 \mathrm{mmol}$), ethanol (50 cm^{3}), and glacial acetic acid ($0.48 \mathrm{~g}, 8 \mathrm{mmol}$) was heated under reflux (2 h). Evaporation of the mixture gave a residue which was recrystallised from acetonitrile to give 2,3-dimethyl-8-(4-methylpiperazin-1-ylpropyl)imidazo[4',5':5,6] pyrido[2,3-d]pyrimidine $55 \mathrm{~h}\left(0.75 \mathrm{~g}, 54 \%\right.$) as a buff solid, m.p. $247-249{ }^{\circ} \mathrm{C}$

[^1](Found: C, 60.8; H, 7.5; N, 31.5. $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~N}_{8}$ requires $\mathrm{C}, 61.0 ; \mathrm{H}$, $7.39 ; \mathrm{N}, 31.6 \%$); $v_{\max } / \mathrm{cm}^{-1} 1322,1398,1550,1575,1626,2805$, 2940 and $3350 ; \delta_{\mathrm{H}} 1.88$ (quint, $J 7, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 2.4 (s, $\left.\mathrm{CCH}_{3}\right), 2.5-2.75(\mathrm{~m}, 10$ aliphatic H$\left.), 3.77(\mathrm{q}, \mathrm{J} 7, \mathrm{HNCH})_{2}\right), 3.85$ (s, NCH_{3}), 8.45 (br t, J 7, $H \mathrm{NCH}_{2}$), 8.50 (s, 6- or 9-H) and 8.70 ($\mathrm{s}, 9-$ or $6-\mathrm{H}$).

The derivatives $\mathbf{5 5 b}-\mathrm{g}$ were similarly prepared from the corresponding imine 54 and the appropriate primary amine. Their analytical and spectral details have been deposited as Supplementary publication [SUP No: 56895 (pp. 11)]*.

Reactions of 8 -Amino-2,3-dimethylimidazo $\left[4^{\prime}, 5^{\prime}: 5,6\right]$ -pyrido[2,3-d] pyrimidine 55a.-(a) Acid hydrolysis. A stirred solution of compound $55 \mathrm{a}(1.1 \mathrm{~g})$ in $2 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}\left(100 \mathrm{~cm}^{3}\right)$ was heated under reflux (2.5 h). The resulting pale yellow solution was chilled, made alkaline (conc. aq ammonia solution) and after further storage ($0^{\circ} \mathrm{C}$) the solid product was collected, washed (i, $\mathrm{H}_{2} \mathrm{O}$; ii, $\mathrm{EtOH} ; \mathrm{iii}, \mathrm{Et}_{2} \mathrm{O}$), dried and identified as compound $52(0.8 \mathrm{~g}, 74 \%)$, a buff solid, m.p. $>360^{\circ} \mathrm{C}$; identical with a sample prepared from compound 43 e and formic acid (see above).
(b) With acetic anhydride. A suspension of compound 55a $(2.1 \mathrm{~g})$ in acetic anhydride $\left(50 \mathrm{~cm}^{3}\right)$ was heated under reflux $(30 \mathrm{~min})$. After the mixture had cooled the solid product was collected, washed with ether and recrystallised from DMF to give 8 -acetamido-2,3-dimethylimidazo[$\left.4^{\prime}, 5^{\prime}: 5,6\right]$ pyrido[2,3-d]pyrimidine 55 i ($1.6 \mathrm{~g}, 63 \%$) as buff needles, m.p. $311-313{ }^{\circ} \mathrm{C}$ (decomp.) (Found: C, $56.0 ; \mathrm{H}, 4.7 ; \mathrm{N}, 32.4 . \mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{6} \mathrm{O}$ requires $\mathrm{C}, 56.2 ; \mathrm{H}, 4.72 ; \mathrm{N}, 32.8 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1255,1335,1490$, $1585,1600,1635,1700$ and $2700-3250 ; \delta_{\mathrm{H}} 2.39\left(\mathrm{~s}, \mathrm{CCH}_{3}\right), 2.70$ $\left(\mathrm{s}, \mathrm{COCH}_{3}\right), 3.84\left(\mathrm{~s}, \mathrm{NCH}_{3}\right), 8.79(\mathrm{~s}, 6-$ or $9-\mathrm{H}), 8.97(\mathrm{~s}, 9-$ or $6-\mathrm{H}$) and 10.70 ($\mathrm{vbr} \mathrm{s}, \mathrm{NH}$).

10-Amino-2,3-dimethyl-6,7,8,9-tetrahydroimidazo[4',5':5,6]-pyrido[2,3-b]quinolin-9-one 57.-A mixture of compound 56 $(1.6 \mathrm{~g})$ and zinc chloride (11.2 g) in xylene ($100 \mathrm{~cm}^{3}$) was stirred and heated under reflux (3 h). After the mixture had cooled it was evaporated and the solid residue triturated with water (400 cm^{3}). Saturated aqueous citric acid ($100 \mathrm{~cm}^{3}$) was added to give a clear solution which was treated with $2 \mathrm{~mol}_{\mathrm{dm}^{-3} \mathrm{NaOH} \text { to }}$ give a solution of pH 11. The resulting solid product was collected, washed with water, dried and recrystallised from DMF to give compound $57(0.8 \mathrm{~g}, 50 \%)$ as a buff solid, m.p. $>360{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 63.8 ; \mathrm{H}, 5.6 ; \mathrm{N}, 24.7 . \mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}$ requires C, $64.0 ; \mathrm{H}, 5.37 ; \mathrm{N}, 24.9 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1264,1410,1514,1553$, 1588, 1620, 2958, 3158 and $3302 ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]-\mathrm{DMSO}+\mathrm{D}_{2} \mathrm{O}\right)$ 2.04 (quint, $\mathrm{J} 6, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $2.62-2.70\left(\mathrm{~m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$ and CCH_{3}), $3.02\left(\mathrm{t}, \mathrm{J} 6, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.80\left(\mathrm{~s}, \mathrm{NCH}_{3}\right)$ and $8.92(\mathrm{~s}$, 11-H).

Ethyl 5-Amino-2,3-dimethylimidazo[4,5-b] pyridine-6-carboxylate 65e-A mixture of compound $64 \mathrm{e}(10.0 \mathrm{~g})$ in Dowtherm ${ }^{\mathbb{E}}{ }^{29}\left(200 \mathrm{~cm}^{3}\right)$ was heated under reflux (5 min). The mixture was then chilled, poured into light petroleum (b.p. $60-$ $\left.80^{\circ} \mathrm{C}\right)\left(400 \mathrm{~cm}^{3}\right)$ and extracted with $2 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}(2 \times 50$ cm^{3}). The combined extracts were basified to $\mathrm{pH} 11(50 \% \mathrm{w} / \mathrm{v}$ NaOH) and the solid which formed was collected, washed with water and dried. Purification by MPLC ($49: 1, \mathrm{CHCl}_{3}-\mathrm{MeOH}$ as eluent) gave compound 65e ($7.0 \mathrm{~g}, 70 \%$) as pale yellow crystals, m.p. ${ }^{176-177^{\circ} \mathrm{C}}$ (Found: C, 56.6; H, 6.4; N, 23.9. $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires C, $56.4 ; \mathrm{H}, 6.02 ; \mathrm{N}, 23.9 \%$); $v_{\text {max }} / \mathrm{cm}^{-1}$ $1205,1260,1290,1400,1420,1570,1600,1620,1680,3360$ and $3460 ; \delta_{\mathrm{H}} 1.35\left(\mathrm{t}, \mathrm{J} 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.50\left(\mathrm{~s}, \mathrm{CCH}_{3}\right), 3.61\left(\mathrm{~s}, \mathrm{NCH}_{3}\right)$, $4.33\left(\mathrm{q}, \mathrm{J} 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 7.15\left(\mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right)$ and $8.20(\mathrm{~s}, 7-\mathrm{H})$.

* For details of the deposition scheme see Instructions for Authors, J. Chem. Soc., Perkin Trans. 1, 1992, issue 1.

Preparation of Hypoxanthines 70.-Dowtherm ${ }^{\otimes 29}\left(15 \mathrm{~cm}^{3}\right)$ was heated under reflux and compound 69 e (1.05 g) was added as a powder. Boiling was continued (1 min) and the solution was then allowed to cool. The resulting solid was collected, washed with ether and dried to give 8,9-dimethyl-1 $\mathrm{H}, 9 \mathrm{H}$-purin-6-one $\mathbf{7 0 e}$ $\left(0.75 \mathrm{~g}, 91 \%\right.$), a buff solid, m.p. $>360^{\circ} \mathrm{C}$ (Found: C, 51.3 ; H, 4.85; $\mathrm{N}, 34.0 . \mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O}$ requires C, 51.2; $\mathrm{H}, 4.91 ; \mathrm{N}, 34.1 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1200,1265,1340,1370,1395,1550,1595$ and $1680 ; \delta_{\mathrm{H}}$ $2.44\left(\mathrm{~s}, \mathrm{CCH}_{3}\right), 3.63\left(\mathrm{~s}, \mathrm{NCH}_{3}\right), 7.92(\mathrm{~s}, 2-\mathrm{H})$ and $12.0(\mathrm{vbr} \mathrm{s}$, $1-\mathrm{H}) ; m / z 164\left(M^{+}\right)$.

Similarly, compound 691 (1.2 g) gave 9-(2-hydroxyethyl)8 -methyl-1H,9H-purin-6-one $701(0.6 \mathrm{~g}, 65 \%)$ as buff plates, m.p. $>360^{\circ} \mathrm{C}$ (Found: C, 49.2; H, 5.0; N, 29.0. $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}$ requires $\mathrm{C}, 49.5 ; \mathrm{H}, 5.19 ; \mathrm{N}, 28.9 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1275,1350$, 1380, 1440, 1465, 1595, 1680 and $3440 ; \delta_{\mathrm{H}} 2.48\left(\mathrm{~s}, \mathrm{CCH}_{3}\right)$, 3.69 (t, J 6, CH ${ }_{2} \mathrm{CH}_{2} \mathrm{OH}$), 4.14 ($\mathrm{t}, \mathrm{J} 6, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$), 4.90 (br s, OH), 7.93 (s, 2-H) and 12.05 (vbr s, 1-H); m/z 194 $\left(M^{+}\right)$.

Preparation of 2-Amino-9H-purines 86.-A solution of compound $83 \mathrm{a}(2.2 \mathrm{~g})$ in decahydronaphthalene $\left(25 \mathrm{~cm}^{3}\right)$ was boiled (1 min) and then allowed to cool. The solid which separated was collected, recrystallised from ethanol and identified as 2-amino-8,9-dimethyl-9H-purine $\mathbf{8 6 a}$ ($1.7 \mathrm{~g}, 77 \%$), colourless crystals, m.p. $248-250{ }^{\circ} \mathrm{C}$ (Found: C, 51.6; H, 5.55; N, 42.8. $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}_{5}$ requires C, $51.5 ; \mathrm{H}, 5.56 ; \mathrm{N}, 42.9 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1270,1340,1370,1420$, $1455,1500,1585,1620,1655,3170$ and $3315 ; \delta_{\mathrm{H}} 2.45\left(\mathrm{~s}, \mathrm{CCH}_{3}\right)$, $3.55\left(\mathrm{~s}, \mathrm{NCH}_{3}\right), 6.34\left(\mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right)$ and $8.40(\mathrm{~s}, 6-\mathrm{H}) ; \mathrm{m} / \mathrm{z} 163$ (M^{+}).

The following compounds were similarly prepared from the amines 83b-g: 2-amino-9-methyl-9H-purine 86b (111 mg, 59%), a colourless solid, m.p. $244-246^{\circ} \mathrm{C}$ (lit., ${ }^{30} \mathrm{~m} . \mathrm{p} .242-$ $243^{\circ} \mathrm{C}$) (Found: C, 48.7; H, 4.85; N, 46.8. Calc. for $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}_{5}$: C, 48.3; H, 4.73; N, 47.0\%); $v_{\text {max }} / \mathrm{cm}^{-1} 1290,1410,1440,1470,1525$, $1580,1630,3180,3300$ and $3390 ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$-DMSO 3.63 (s, NCH_{3}), $6.50\left(\mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right), 8.00(\mathrm{~s}, 8-\mathrm{H})$ and $8.55(\mathrm{~s}, 6-\mathrm{H}) ; m / z$ 149 (M^{+}); 2-amino-9-(2-hydroxyethyl)-8-methyl-9H-purine 86c $\left(0.54 \mathrm{~g}, 72 \%\right.$), buff crystals, m.p. 213-216 ${ }^{\circ} \mathrm{C}$ (Found: C, $50.1 ; \mathrm{H}$, $5.85 ; \mathrm{N}, 36.1 . \mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{O}$ requires C, 49.7; $\mathrm{H}, 5.74 ; \mathrm{N}, 36.3 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1255,1340,1430,1500,1590,1630,1660,3160,3330$ and 3380; $\delta_{\mathrm{H}} 2.48\left(\mathrm{~s}, \mathrm{CCH}_{3}\right), 3.70\left(\mathrm{q}, J 6, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 4.08(\mathrm{t}$, $J 6, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$), $5.02(\mathrm{brt}, J 6, \mathrm{OH}), 6.38\left(\mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right)$ and 8.40 (s, 6-H); m/z $193\left(M^{+}\right) ; 2$-amino-8-isopropyl-9-methyl-9Hpurine $86 d$ ($3.4 \mathrm{~g}, 79 \%$), pale orange crystals, m.p. $186-188^{\circ} \mathrm{C}$ (Found: C, 56.3; H, 6.95; N, 36.2. $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{~N}_{5}$ requires C, 56.5; H, 6.85 ; $\mathrm{N}, 36.6 \%$); $v_{\max } / \mathrm{cm}^{-1} 1240,1270,1410,1445,1585,1610$, 2970, 3190, 3370 and 3470; $\delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$-DMSO) 1.30 [d, $J 7$, $\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$], 3.24 [sept, $\mathrm{J} 7, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$], $3.60\left(\mathrm{~s}, \mathrm{NCH}_{3}\right), 6.40$ (br s, NH_{2}) and $8.44(\mathrm{~s}, 6-\mathrm{H}) ; m / z 191\left(M^{+}\right) ; 2$-amino-8,9-dimethyl-6-methylthio-9H-purine 86 e ($1.2 \mathrm{~g}, 74 \%$), tiny colourless needles, m.p. $235-237^{\circ} \mathrm{C}$ (Found: C, 46.3; H, 5.42; N, 33.6; S, 15.1. $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{~S}$ requires C, 45.9; H, 5.30; N, 33.5; S, 15.3%); $v_{\text {max }} / \mathrm{cm}^{-1} 1270,1290,1340,1400,1460,1490,1570,1595,1625$, 3180,3300 and $3500 ; \delta_{\mathrm{H}} 2.40\left(\mathrm{~s}, \mathrm{CCH}_{3}\right), 2.55\left(\mathrm{~s}, \mathrm{SCH}_{3}\right), 3.50(\mathrm{~s}$, NCH_{3}) and 6.30 (br s, NH_{2}); m/z $209\left(M^{+}\right) ; 2-a m i n o-9-(2-$ hydroxyethyl)-8-methyl-6-methylthio-9H-purine $86 \mathrm{f}(0.95 \mathrm{~g}$, 66%), a colourless solid, m.p. $214-215^{\circ} \mathrm{C}$ (Found: C, 45.2 ; H, 5.4; $\mathrm{N}, 28.9 . \mathrm{C}_{9} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{OS}$ requires $\mathrm{C}, 45.2$; $\mathrm{H}, 5.48$; $\mathrm{N}, 29.3 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1280,1300,1355,1420,1490,1580,1600,1650,2930$, 3200,3340 and $3410 ; \delta_{\mathrm{H}} 2.55\left(\mathrm{~s}, \mathrm{CCH}_{3}\right), 2.65\left(\mathrm{~s}, \mathrm{SCH}_{3}\right), 3.70(\mathrm{q}, J$ 6, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$), $4.10\left(\mathrm{t}, \mathrm{J} 6, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right.$), 5.10 (br t, $J 6, \mathrm{OH}$) and $6.50\left(\mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right) ; m / z 239\left(M^{+}\right) ;$2-amino-9-methyl-6-methylthio- 9 H -purine 86 g ($90 \mathrm{mg}, 62 \%$), colourless crystals, m.p. $183-184^{\circ} \mathrm{C}$ (lit., ${ }^{31}$ m.p. $190^{\circ} \mathrm{C}$) (Found: C, 43.3; H, 4.7; N, 35.5. Calc. for $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{~S}: \mathrm{C}, 43.1 ; \mathrm{H}, 4.65 ; \mathrm{N}, 35.9 \%$); $v_{\text {max }} / \mathrm{cm}^{-1}$ $1310,1390,1460,1510,1565,1590,1630,3200,3320$ and $3410 ; \delta_{\mathrm{H}}$ $2.57\left(\mathrm{~s}, \mathrm{SCH}_{3}\right), 3.60\left(\mathrm{~s}, \mathrm{NCH}_{3}\right), 6.50\left(\mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right)$ and $7.88(\mathrm{~s}, 8-\mathrm{H})$; $m / z 195\left(M^{+}\right)$.

Preparation of 6-Amino-9H-purines 87.-Compound 84b (3.0 g) was heated at $200^{\circ} \mathrm{C}(1 \mathrm{~min})$. The melt was allowed to cool and solidify and was then powdered, recrystallised from ethanol and identified as 6 -amino- 9 -methyl- 9 H -purine $87 \mathrm{~b}(0.3 \mathrm{~g}, 10 \%$), colourless prisms, m.p. $302-304{ }^{\circ} \mathrm{C}$ (sealed tube) [lit., ${ }^{32} \mathrm{~m} . \mathrm{p}$. $301-302{ }^{\circ} \mathrm{C}$ (sealed tube)] (Found: C, 48.0; H, 4.65; N, 47.3. Calc. for $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}_{5}$. C, 48.3; H, 4.73; $\mathrm{N}, 47.0 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1230$, $1325,1410,1480,1575,1600,1670,3100$ and $3280 ; \delta_{\mathrm{H}} 3.72$ (s, NCH_{3}), 7.18 (br s, NH_{2}), 8.08 ($\mathrm{s}, 8-\mathrm{H}$) and 8.16 ($\mathrm{s}, 2-\mathrm{H}$); $m / \mathrm{z} 196$ $\left(\mathrm{MH}^{+}\right)$. Similarly, compound 84g gave 6-amino-9-methyl-2-methylthio- 9 H -purine $87 \mathrm{~g}(180 \mathrm{mg}, 61 \%)$ as colourless needles, m.p. $274-276^{\circ} \mathrm{C}$ (lit., ${ }^{14}$ m.p. $261-262^{\circ} \mathrm{C}$) (Found: C, 43.2 ; H, 4.7; $\mathrm{N}, 35.8$. Calc. for $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{~S}: \mathrm{C}, 43.1 ; \mathrm{H}, 4.65 ; \mathrm{N}, 35.9 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1240,1305,1320,1420,1450,1580,1630,3170,3300$ and 3390; $\delta_{\mathrm{H}} 2.48\left(\mathrm{~s}, \mathrm{SCH}_{3}\right), 3.66\left(\mathrm{~s}, \mathrm{NCH}_{3}\right), 7.26\left(\mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right)$ and $7.96(\mathrm{~s}, 8-\mathrm{H}) ; m / z 196\left(M \mathrm{H}^{+}\right)$.

Reactions of 2-Amino-8-isopropyl-9-methyl-9H-purine 86d.(a) With acetic anhydride. A mixture of compound $\mathbf{8 6 d}(1.5 \mathrm{~g})$ and acetic anhydride ($15 \mathrm{~cm}^{3}$) was boiled (10 min). The orange solution was evaporated and the residue shown (TLC) to be a two-component mixture which was separated by MPLC (19:1, $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ as eluent). The first component ($R_{\mathrm{f}} 0.32$) was identified as 2 -(N, N-diacetamido)-8-isopropyl-9-methyl-9Hpurine $85\left(\mathrm{R}^{4}=\mathrm{R}^{5}=\mathrm{AcO}\right)(1.2 \mathrm{~g}, 55 \%)$, a colourless lustrous solid, m.p. ${ }^{166-168^{\circ} \mathrm{C}}$ (Found: C, $56.9 ; \mathrm{H}, 6.1 ; \mathrm{N}, 25.3$. $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{2}$ requires C, $56.7 ; \mathrm{H}, 6.22 ; \mathrm{N}, 25.4 \%$); $v_{\text {max }} / \mathrm{cm}^{-1}$ $1230,1250,1375,1390,1590,1605,1710,2940$ and $2980 ; \delta_{\mathrm{H}} 1.50$ $\left[\mathrm{d}, J 7, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 2.33\left(\mathrm{~s}, 2 \times \mathrm{COCH}_{3}\right), 3.32[\mathrm{sept}, J 7$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 3.86\left(\mathrm{~s}, \mathrm{NCH}_{3}\right)$ and 9.06 (s, 6-H); $m / z 275\left(M^{+}\right)$. The second component ($R_{\mathrm{f}} 0.12$) was identified as 2-(acetamido8 -isopropyl-9-methyl-9H-purine $85\left(\mathrm{R}^{4}=\mathrm{H}, \mathrm{R}^{5}=\mathrm{AcO}\right)(0.5 \mathrm{~g}$, 26%), colourless crystals, m.p. $188-190{ }^{\circ} \mathrm{C}$ (Found: C, 56.2 ; H, $6.4 ; \mathrm{N}, 30.2$. $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}$ requires $\mathrm{C}, 56.6$; $\mathrm{H}, 6.48$; $\mathrm{N}, 30.0 \%$); $v_{\max } / \mathrm{cm}^{-1} 1240,1275,1320,1380,1415,1440,1520,1615,1680$, $2980,3100,3150$ and $3220 ; \delta_{\mathrm{H}} 1.34$ [d, J 7, $\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$], $2.22(\mathrm{~s}$, COCH_{3}), 3.32 [sept, $J 7, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$], 3.72 (s, NCH_{3}), 8.76 (s, 6-H) and 10.19 (br s, NH); $m / z 233$ (M^{+}).
(b) With benzoic anhydride. Compound $86 \mathrm{~d}(1.5 \mathrm{~g})$ was added with stirring to benzoic anhydride (18 g) at $150^{\circ} \mathrm{C}$ and heating maintained $(10 \mathrm{~min})$. The orange solution was cooled and added with stirring to aqueous $2 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{Na}_{2} \mathrm{CO}_{3}\left(250 \mathrm{~cm}^{3}\right)$. After being stirred (30 min) the solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(3 \times 100 \mathrm{~cm}^{3}\right)$ and the combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The residue was purified by MPLC (19:1, $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ as eluent) to give 2-benzamido-8-isopropyl-9-methyl-9H-purine $85\left(\mathrm{R}^{4}=\mathrm{H}, \mathrm{R}^{5}=\mathrm{Bz}\right)(1.1 \mathrm{~g}, 47 \%)$ as fine colourless needies, m.p. $186-187^{\circ} \mathrm{C}$ (Found: C, 65.2; H, 5.8; N, 23.8. $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}$ requires $\left.\mathrm{C}, 65.1 ; \mathrm{H}, 5.80 ; \mathrm{N}, 23.7 \%\right) ; v_{\text {max }} / \mathrm{cm}^{-1}$ $1230,1300,1410,1430,1510,1605,1700$ and $3240 ; \delta_{\mathrm{H}} 1.36$ [d, J 7, $\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$], 3.38 [sept, $J 7, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$], $3.76\left(\mathrm{~s}, \mathrm{NCH}_{3}\right)$, $7.45-7.65(\mathrm{~m}, 3 \mathrm{ArH}), 7.98-8.04(\mathrm{~m}, 2 \mathrm{ArH}), 8.90(\mathrm{~s}, 6-\mathrm{H})$ and 10.96 (br s, NH); $m / z 296\left(M^{+}\right)$.

Acknowledgements

We thank the staff of the Physical Chemistry Department, Rhone-Poulenc Rorer Ltd., for the determination of spectra and microanalyses.

References

1 A. H. M. Al-Shaar, D. W. Gilmour, D. J. Lythgoe, I. McClenaghan and C. A. Ramsden, J. Chem. Soc., Perkin Trans. I, preceding paper.
2 C. A. Ramsden, Adv. Heterocycl. Chem., 1980, 26, 1.
3 W. D. Ollis C. A. Ramsden and S. P. Stanforth, Tetrahedron, 1985, 41, 2239.
4 For a review see J. A. Montgomery and J. A. Secrist in Comprehensive Heterocyclic Chemistry, ed. K. T. Potts, Pergamon Press Ltd., 1984, vol. 5, p. 635.
5 G. Y. Lesher, E. J. Froelich, M. D. Gruett, J. H. Bailey and R. P. Brundage, J. Med. Pharm. Chem., 1962, 5, 1063; P. E. Grubb, Analytical Profiles of Drug Substances, ed. K. Florey, Academic Press, NY, 1979, vol. 8, p. 371.
6 F. C. Steward and A. D. Krikoria, Plants, Chemicals, and Growth, 1971, Academic Press, NY.
7 R. K. Chambers, unpublished results.
8 For a review see A. McKillop and E. C. Taylor in Advances in Organic Chemistry: Methods and Results-The Chemistry of Cyclic Enaminonitriles and o-Aminonitriles, ed. E. C. Taylor, Interscience publishers, 1970, vol. 7, p. 79.
9 N. J. Leonard and S. P. Hiremath, Tetrahedron, 1986, 42, 1917.
10 For a review see T. L. Gilchrist and G. E. Gymer, Adv. Het. Chem., 1974, 16, 78; D. J. Brown in Mechanisms of Molecular Migrations, ed. B. S. Thyagarajan, Wiley Interscience, 1968, vol. 1, p. 209.

11 D. J. Brown and S. F. Mason, J. Chem. Soc., 1957, 682.
12 E. Bellora, E. Cereda and A. Donetti, Synthesis, 1986, 288.
13 For a review see G. Shaw in Comprehensive Heterocyclic Chemistry, ed. K. T. Potts, Pergamon Press, 1984, vol. 5, p. 567; J. H. Lister in Heterocyclic Compounds-Fused Pyrimidines Part II, Purines, ed. D. J. Brown, Wiley Interscience, NY, 1971, p. 31.

14 J. Baddiley, B. Lythgoe, D. McNeil and A. R. Todd, J. Chem. Soc., 1943, 383.
15 R.C. Fuson, W. E. Parham and L. J. Reed, J. Org. Chem., 1946, 11, 194.
16 C. Cosar, C. Crisan, R. Horclois, R. R. M. Jacob, J. Robert, S. Tchelitcheff and R. Vaupre, Arzneim.-Forsch, 1966, 16, 23.
17 Prepared in a similar manner to the 2-nitro isomer B. D. Palmer and W. D. Denny, J. Chem. Soc., Perkin Trans. 1, 1989, 95.

18 O. Diels, H. Gartner and R. Kaack, Chem. Ber., 1922, 55, 3439; F. Freeman, Synthesis, 1981, 925.

19 M. Hoffer, M. Mitrovic, A. Beaman and A. Brossi, J. Med. Chem., 1971, 14, 993.
20 M. Takebayshi and Y. Urushibara, Bull. Chem. Soc. Japan, 1936, 11, 557.

21 R. Gompper, H. E. Noppel and H. Schaefer, Angew. Chem., Int. Ed. Engl., 1963, 2, 686; T. V. Protopopova, A. P. Skoldinov and A. V. Stavrovskaya, Zh. Org. Khim., 1967, 3, 1749 (Chem. Abstr., 1968, 68, 12448n); V. Grakauskas, J. Org. Chem., 1971, 36, 3251.
22 V. Sunjic, F. Kajfez and P. Mildner, Croat. Chem. Acta., 1969, 41, 107.
23 A. Hantzsch and M. Wolvekamp, Liebigs Ann. Chem., 1904, 331, 265.
24 V. K. Bhagwat and F. L. Pyman, J. Chem. Soc., 1925, 127, 1832.
25 C. E. Hazeldine, F. L. Pyman and J. Winchester, J. Chem. Soc., 1924, 125, 1431.
26 C. Cosar, C. Crisan, R. Horclois, R. M. Jacob, J. Robert, S. Tchelitcheff and R. Vaupre, Arzneim.-Forsch., 1966, 16, 23.
27 British Pat. 1119636 (Chem. Abs., 1968, 69, 106705y).
28 W. J. Ross, W. B. Jamieson and M. C. McCowen, J. Med. Chem., 1972, 15, 1035.
29 Dowtherm is an eutectic mixture containing diphenyl ether and biphenyl.
30 A. G. Beauman, R. Duschinsky, E. Grunberg and W. Tautz, J. Med. Chem., 1966, 9, 373.
31 C. W. Noell and R. K. Robins, J. Med. Pharm. Chem., 1962, 5, 558.
32 T. E. Myers and L. Zeleznick, J. Org. Chem., 1963, 28, 2087.

Paper 2/02537J
Received 15th May 1992
Accepted 22nd June 1992

[^0]: * For details of the deposition scheme see Instructions for Authors in
 J. Chem. Soc., Perkin Trans. 1, 1992, issue 1.

[^1]: * For details of the deposition scheme see Instructions for Authors, J. Chem. Soc., Perkin Trans. 1, 1992, issue 1.

